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Abstract — Herein we develop a creep test method for characterizing nonlinear viscoelastic behaviour of an
elastomer through weak deformation. This approach is based on an expanded Schapery model. Short term
creep tests at various stress levels were performed upon specimens composed of a synthetic elastomer. A
method to predict the long term creep behaviour using short term creep tests is presented. Experimental
results and theoretical predictions are compared.
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Résumé — Prévision a longue durée du comportement viscoélastique non-linéaire en fluage
des élastomeéres : extension du modeéle de Schapery. Dans ce travail, nous développons une
méthode de caractérisation en fluage du comportement viscoélastique non-linéaire d’un élastomere en pe-
tites déformations. Cette approche est basée sur une généralisation du modele de Schapery. Des essais de
fluage a court terme et a différents niveaux de contraintes ont été menés sur des éprouvettes en élastomere
synthétique. Une méthode de prévision du comportement en fluage a long terme par le biais d’essais de
fluage a court terme est présentée. Une comparaison entre les résultats expérimentaux et les prévisions a
partir du modele théorique est discutée.

Mots clés : Essais de fluage / visco-élastcité non-linéaire / modele de Schapery / équivalence

contrainte-temps

1 Introduction

Elastomers have great industrial applications. Their
physical properties encourage their use in various appli-
cations for which alternative materials do not exist. Elas-
tomers are characterized by complex, nonlinear and dis-
sipative behaviour. Some of them present high damping
which depends more or less on frequency and tempera-
ture and offer excellent frequency properties for vibration
and acoustic isolation. Composite material with elastomer
matrix are used since a lot of decades because of their
special properties (low mass density, high failure modu-
lus and high damping factor), the use of such composite

# Corresponding author: gacem_hatem@yahoo.fr

material began at early 1900’s when captive balloons were
designed and built in Germany and UK:

— Researches in domestic fields focus on pliable com-
posites materials used as membranes in the area of
moving homes and protection of environment: mov-
ing dam used to control water level and to prevent
flooding

— Researches in transports, the fields deals with stiff
elastomer composite materials: tires, silent blocks,
steel/elastomer laminates absorber in brake systems.

Elastomer behaviour is generally considered as visco-
hyperelastic, quasi-incompressible and non-linear. Use
of elastomer materials becomes increasingly frequent in
aeronautic and automotive industries. Generally, these
materials are employed for the security of dynamic
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Nomenclature

D;: stress step

J: creep compliance
t: actual time
7: elapsed time

P (t): reduced time

o(t): actual reduced time
e (t): elapsed reduced time
o: cauchy stress tensor

e: linear strain

@: reduced creep strain

X derivative of X per time

ar: time-temperature multiplying factor
aq: time-stress multiplying factor

FE: error on constant shift factor
g1, g2: stress dependent factors

a,: generalized time—stress multiplying factor
A(on): constant horizontal shift factor (at short time)
&(omw): time dependent horizontal shift factor

MPa

MPa™!

MPa

MPa~*!

systems. Such uses require detailed knowledge of consti-
tutive equations, in particular the behaviour displayed
when functioning in extreme conditions of temperature
or strain inducing various physical phenomena.

To model elastomer behaviour, finite deformations,
nonlinearity, dissipative processes and temperature effects
must simultaneously be taken into account. Various the-
ories have been developed to perfect theoretical and nu-
merical databases in order to describe the global and local
behaviour of complex elastomer systems. Based on exper-
imental characterization, elastomer models may be subdi-
vided into two categories. The first is phenomenological,
drawing on global behaviour while the second category is
based on micro structural properties.

Elastomer behaviour can be considered as a superim-
position of hyper-elasticity, damage and viscoelasticity.
Thus, the behaviour is visco-hyperelastic.

Various theories have been developed to model the
nonlinear viscoelastic behaviour of elastomers. A lot of
approaches extend the classic idea of linear visco-elasticity
by the introduction of hereditary integrals. Volterra’s se-
ries are a very general approach when looking at this
point of view [1,2], for example, developed a constitu-
tive visco-hyperelastic law as a function of parameters
describing both equilibrium and instantaneous responses.
Narrowing to single hereditary integral is more convenient
when developing non-linear viscoelasticity laws because
the non-linearity is expressed as non-linear creep or re-
laxation functions. This approach is very close to linear
viscoelasticity and can be easily generalized to large defor-
mations, see O’'Dowd and Knauss [3], Lianis [4], Hausler
and Sayir [5] Gacem [6]. The most famous approach in
this field is Schapery model examined in Section 2.1
Schapery [7,8]. Schapery model is a simple construction
generalizing line viscoelastic creep behaviour on the as-
sumption of small strains. The model lays in two points:

— Stress expands make contracts artificially time by the
way of shift factor.

— Stress and hereditary integral are weighted respec-
tively by two functions which depend on stress and
equal to 1 for small stress (linear behaviour).

The success of this non-linear viscoelastic Schapery model
is that it suits really:

— to  wvarious loadings, behaviours, fractures,
Schapery [12], damages, Schapery [13], Hinterhoelzl
and Schapery [14];

— to various materials and applications, Schapery [15—
18).

The present study seeks to present an approach for nonlin-
ear viscoelastic characterization of elastomers using mea-
surements from short term creep tests. This approach is
based on an extended Schapery model. Afterwards, we
shall develop a method for deriving the dependent long
term behaviour from short term creep measurements. The
method is based on developing a convenient shift factor
expression which involves time dependence, Gacem [6].
Experiments are conducted on synthetic carbon black
filled elastomer. This material is used in manufacturing
traditional multilayer plate incorporating metallic and
visco-elastic materials for machine suspension. In addi-
tion, this composite structure is used in brake system
for vibro-acoustic isolation. The visco-elastic material is
worked as a damping layer. Finally, we compare the the-
oretical predictions and experimental results.

2 Nonlinear viscoelastic modelling

Majority of polymers and rubber materials, at am-
bient temperature can be modeled by linear viscoeslas-
tic laws in the field of small strains. Some of them, such
as carbon black filled elastomers, show a non linear be-
haviour. When undergoing finite deformations, viscoelas-
tic materials display non linear behaviours generated both
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by large deformations and the nature of materials. Struc-
tural response of viscoelastic material is affected by tem-
perature mainly through thermal expansion and change
in the relaxation and retardation time. When AT is the
increase of temperature above some reference value T,
reduced time 7 is defined by the differential equation

dt
dyp = =
ar
ar = ar [T(t)] is often called time-temperature multi-

plying factor, Ferry [19], Morland and Lee [20], Lee and
Roberts [21] which depends of actual time ¢, geomet-
ric and behavioural nonlinearity. Various theories have
been developed for modeling the nonlinear viscoelastic be-
haviour of different elastomers. Schapery’s model, close to
linear viscoelasticity Schapery [22] and rheological model,
is commonly used for the purpose of modeling nonlin-
ear viscoelastic behaviour in the case of polymers and
elastomers.

2.1 Schapery model

A nonlinear thermo-viscoelastic model has been de-
veloped by Schapery. This model is expressed by a sim-
ple integral form and is based on the thermodynamics of
irreversible process theory introducing internal variables
which take into account the history of the material from
some initial point in time [23].

In his model Schapery wuses the Onsager rela-
tions (symmetry of creep and relaxation functions for
anisotropic materials) based on thermodynamic ap-
proach [24-26] and generalizes Lee’s suggestions [20, 21].
The physical basis for this description derives from the
observation that stress induced dilatation effects the mo-
bility of molecular chains through changing the free vol-
ume of material. The empirical concept described by Lee
is finally enlarged by Knauss and Emri [27, 28] by in-
cluding, beside temperature, the effect of stress and sol-
vent concentration induced volume dilatation. The time
dependence (viscosity) is modified by a time multiplying
factor a which depends on the temperature T, mechanical
dilation € (inducing stress o) and solvent concentration c,

a=alT,o(0),] (1)

Doolittle [29] expressed this factor in terms of free vol-
ume by an empirical logarithmic law taking up again by
Knauss et al. [27]. The Schapery model, in situation of
temperature 7" and solvent concentration constant ¢, may
be expressed in deformation response form as follows:

() = {91lo(0)]6:(0") [ 0)]}

where,

— &(t) and o(t) are respectively linear strain and Cauchy
stress tensors. J(t) stands for the creep compliance as
a function increasing with time and if necessary, as a
function of temperature.

— t denotes the actual time and 7 is a variable ranging
over an interval representing the time of load history
and called elapsed time.

— g1[o(t)] is a stress dependent factor which expresses
the non-linear memory of the material. The function
g1 is equal to 1 at low stress (linear viscoelasticity)
while under high stress levels it arrows proportion-
ally to stress. In the case of polymers, a slope gen-
erally between 0.04 MPa~! and 0.05 MPa~! charac-
terises the evolution of the function g; (at high stress),
Zaoustos [30].

— 6(t) = a(t)g2[o(t)], g2[o(t)] is known as the hard-
ening stress factor. go is equal to 1 at low stress
(linear viscoelasticity) while under high stress it ar-
rows proportionally to stress. In the case of polymers
loaded at high stress, the evolution of the function go
is characterised by a slope between 0.05 MPa~! and
0.06 MPa~!, Zaoustos [30].

; dr
Y(t) = O/m (3)

is the reduced time (Eq. (1)) and 7 is the elapsed time

— ag[o(t)] is the multiplying factor called stress-time
multiplying factor.

— D; = qi[o(tD)]6(t]) — gilo(t; )]G (t;) is the possible
stress step at time t =¢;, 7 =1,2,... n.t; and t;r are
times of stress discontinuity, ¢, < ¢; and t;" > ;.

Schapery nonlinear viscoelastic theory is used as a ba-
sis to extend the Dynamic Mechanical Tests and Anal-
ysis (DMTA) approach to nonlinear characterization,
Zaoustos [30]. Hence, the time required to determine the
nonlinear parameters is substantially reduced using the
DMTA methodology compared to creep and recovery
tests. Among the motivation of the Schapery model is
that is close to visco-elasticity law. In addition, it is writ-
ten in a simple form in the case of creep.

Integrating by parts, equation (2) leads to the follow-
ing expression of Schapery’s model:

t

e(t)=J(0")gilo(®)lo(t)+g [U(t)]/ T (t) = (7)][6 (7)]dr

0

. (4)
where J denotes the derivative of creep function J(¢). The
first right side term in Equation (4) represents the instan-
taneous elastic behaviour of the material, and the second
term the memory effect. Possible discontinuities of stress
are systematically taking into account in Equation (4).
We insist on the fact that the original Schapery model is
invariant with respect to time and can be used only for
non ageing materials.
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Experimental characterization and validation of the
Schapery model when, among others, performed on
stratofilm (a linear low density polyethylene film),
Golden [31]. We should mention that the Schapery model
is a special case of Knauss and Emri work [27,28]) which
have noted that the actual time scale can be modified
by a large number of internal variables (moisture, dilata-
tion, ...) in the same manner as by temperature. These
effects are commonly associated with changes in the free
volume of material that offers a unifying parameter to de-
scribe changes in time scale. Moreover, O’'Dowd et al. [3]
presented a generalised form of the Schapery model which
describes deformation of polymers under both small and
large strains. It uses the kinetic theory of rubber elasticity
as a starting point for large strain behaviour and general-
izes this theory to include the effects of rate dependence.

On the other hand, Straganac et al. [32] have provided
a simplification of Schapery’s model to predict the elas-
tomer’s creep response, in finite deformations, due to a
single step load.

Creep function J was obtained from measurements
associated with linear viscoelastic response and it can
be written by a parametric expression (exponential law,
power law, ...).

2.2 A generalized Schapery model

Generalizing Knauss and Emri suggestions [27], the
reduced time can be expressed in the following differential
equation (see Eq. (3)):

dt
R0 )

The concept of free volume lied in the fact that tempera-
ture, stress solvent concentration, etc. affect the fractional
free volume in the material and consequently the mobil-
ity of inclusions and the change in fractional free volume
due to any one of internal variable is additive. Mobility of
various inclusions generates macroscopic damping in ma-
terial that can be included in time behaviour laws. Let
us assume that the reduced time di is a superposition of
actual reduced time diyy and elapsed reduced time d,:

dy = dyyo + die (6)

These effects can also be associated with changes of two
kinds of free volumes in rubber materials:

— the free volume associated at the molecular scale (mi-
cro level of matrix) which is generated by dig defined
by Knauss and Emri [27] ;

— the free volume associated at the mesoscopic scale
such as discontinuities between separation of phases
(meso level of carbon black) which takes into account
the matrix’s viscoelasticity (rubber). This is generated
by de.

In the Schapery model, time is then artificially tensed
up or expanded by using a shift factor which depends on

both stress and time. Instead of Equation (5) we take into
account Equation (6) and the shift factor is defined by the
following relation:

t

0

where «,(0,t) is the generalized time-stress multiplying
factor.

a,(0,t) = const., V¢t when stress is null. Looking at the
derivative of relation (7) one can notice, taking into ac-
count relationship (6), that actual reduced time diy and
elapsed reduced time dv, are solutions of the following
integro-differential equations:

at +0 | i)
- dye = — 7 7 2 qd dt
oo / o ’

As in classical Schapery model, it is easy to show the
invariance of this generalized model with respect to time
in the case of non ageing materials. That means, if we
have the stress/strain state (o(t), €(t)) at time ¢, we will
have stress/strain state (o(t+7), e(t+7)) at time (¢4 7).
When stress is a single step function:

dypg =

o(t) =09 if t>0
o(t)=01if t <0

Relations (2), bringing down to the first right term of
Equation (7), provide the creep function J represented
by the following equation:

ds
ay (00,t — 9)

e(00,t) = 00 g1 (00) g2 (00) J / (8)

Assume that the classical time-stress multiplying factor
a. is balanced by a weight function H;f(t)’ then the gen-
eralized stress-time multiplying factor is given by:

_ aglo(s)]
L+ flo(s).t — 9)]

Thus, the reduced time v (t), Equation (7) , as regards the
stress step function oy can be written in following form:

9)

aylo(s),t — s

. t+F(O’0,t)7F(O'0,O)

aU(UO)

e(t)

(10)

where F'(o,t) is the primitive of f(o,t) (% = f(o, t))

Finally, when stress is a step function, the creep func-
tion (8), taking into account Equation (9), leads to the
following form:

e(00,t) = 00 g1 (00) g2 (00) J
aU(JO)

t+ F(oo,t) —F(UO,O)]

(i)
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Fig. 1. Scheme of experimental data: reduced creep strain against time (measurements at various preloads (0 < ¢t < tar)).
Classical approach of master curve at oo (lower curve) for longer time periods), A is the constant horizontal shift factor.

3 Prediction of long term response

To identify generalized stress-time multiplying factor

% (Eq. (9)) in the generalized Schapery model,
a specific approach has been developed. The idea is that
an increase in time is equivalent to an increase in stress.
In an analogous context, creep properties measured with
a given preload and at a given time may be shown to
correspond to the creep properties under another preload
and at another time by applying a preload dependent on
the generalized shift factor. The shift factor expression is
determined by the superposition of measurements with
distinct preloads og, 01,02, ,0n,. . on. Thus, step func-
tion o, generates strain according to relation (11) with
F(0,0) = 0. The objective is to determine the time-stress
multiplying factor a,(o,,) and the function F(o,t). Look-
ing at classical Schapery model (Sect. 2.1), weight func-
tions g1[o(t)] and ga[o(t)] can be considered as unit step
functions for low stress, Zaoustos and Papanicolaou [30],
then Equation (11) becomes:

t+ F,(t)
aq(on)

where F),(t) = F(on,t).
From creep strain (o, t) the reduced creep function

E(Jn,t):anJ{ } n=01,2,....,N (12)

D(op,t) = @ is plotted against actual time at various
stress levels, n = 0,1, 2, ..., N. Taking into account equa-
tion (12) reduced creep strain is given by the following
relation:

t+ Fn(t)}

ay(on)

Properties measured under one preload are equivalent to
those under a second preload on a compressed or ex-
panded time scale. Scheme of experimental data are plot-
ted in Figure 1.

Using the different classical horizontal shift factors

A (Eq. (3))

B(o, 1) = J[ (13)

AMop) = " (14)

between one curve at a reference stress op, and other
curves at different stresses o,,, a master curve of the com-
pliance can be formed for a reference preload.

We used the generalized shift factors between short
term creep curves to display (or to complete) a master
curve over a longer time period using the classical method
(Fig. 1). This master curve describes the behaviour over
a broad time range. The effect of a change in preload is
equivalent to measurements on a different time scale, that
means if @(og, tg) = P(on, t,) for two preloads oy and

Op, then J[t”F(’(to)} = J{t"JrF"(t")] for,n=1,2,...;, N.

aa(Ug) [e7e (o'n)
Assume that o¢ is the lower curve (Fig. 1). If &(oy,
to) = P(on,ty), then shift times are related by the equa-
tion below on a logarithmic scale:

log (to + Fo(to)) = log (tn + Fu(ts)) + log [A(on)]  (15)

where A(o,) = %
tal shift factor, on a logarithmic scale, between reduced
creep strains P(og,tp) and P(op,t,). The lower curve
(0 = 0g) is considered, for example, as a master curve.
Then Fy(tp) = 0 and two zones can be graphically de-
tected looking at Figure 2:

is the classical constant horizon-

— zone 1: t < tmin (Fig. 2): reduced creep strain func-
tions for various loadings are parallel (Fig. 2) and thus
the time dependent horizontal shift factor ((on, )
is determined in this range time by the straight line
A;1B; on a logarithmic scale, (Fig. 2). By choosing
F,, = 0 and taking into account relation (15) we ob-
tain the following equation:

A1 By =log (to) —log (t,) = log [((on, t,)] =log [A(on)]

Hence, in this area 1, the time dependant horizon-
tal shift factor does not depend upon time and is ex-
pressed by the following relation:

C(on,tn) = Aow)
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Fig. 2. Scheme of experimental data: reduced creep strain against time (measurements at various preloads (0 < t < tar)). New
approach of master curve at oo (lower curve) for longer time periods). £ is the time dependent horizontal shift factor, X is the

constant horizontal shift factor.

— zone 2 (Fig. 2): tmin < t < tmax. We use the con-
stant horizontal shift factor A\, to complete the mas-
ter curve over a long time period at a reference stress
00, (dashed line). A discrepancy can be denoted be-
tween shifted curve and experimental curve and thus
the time dependent shift factor ((op,t),) can be de-
scribed through the following relation:

A0y = log (ty) —log (t;,) = log[C(on, 1)) (16)

Using the time dependant horizontal shift factor, balance
Equation (15), and Fy(tg) = 0:

log (t()) = log (t{n + F, (ﬁ;)) + log [A(on)]

)

From which the time dependent horizontal shift factor
C(on,th) is defined at time ¢/, by the following relation:

Thus, Equation (16) becomes:

g 6(01,)] = log { Ao 1+

C(on,th,) = Noy) [1 + %}

n

(17)

Creep master curves, however, do not enjoy the same
translation factor for all time ranges. A discrepancy can
be denoted at long time between shifted curve with clas-
sical (constant) shift factor and the experimental curve.
We mention that the error £ between these two curves
can be characterized by the quotient £ = C3Bs/A5C5.

Hence, the shift factor is not only a function of stress
but may be also a function of time and thus confirms the
generalized Schapery model.

o &lo 0

Ao ;)

(o)

=log(t)
T min

T max

Fig. 3. General time dependent horizontal shift factor as func-
tion of time.

In short, the generalized Shapery method used to pre-
dict long time behaviour of materials is summarized in a
pair of Equations (18) and (19) providing the time depen-
dent shift factor and a wide range of experimental curves
at various stresses o, (Fig. 3) which allow the function
F(t) and the constant K,,n = 1,2,...., N to be updated.

t < tmin : C(on,t) = A(on) (18)

(1))
t

tmin <t < tmax 1 ((On,t) = Aom) [1 +

| a9
4 Experiment and analysis
In this section we present an experimental identifica-

tion of viscoelastic response using creep tests. Figures 4
and 5 describe the creep test apparatus which is equiped
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Displaceiment measure
system

Fig. 4. Experimental apparatus for creep test.

Dleasme system

Fig. 5. Displacement measurement system.

with an electronic displacement measuring system (trans-
ducer + data airing card + software).

The normalized specimen, Figure 6a, which is made of
a synthetic vulcanised elastomer is used to conduct creep
tests at various stress levels. Its glass transition tempera-
ture is approximately 248 K. This material is used in man-
ufacturing classical multilayer plate incorporating visco-
hyperelastic materials. This latter is confined between the
stiff layers and worked as a damping layer. Four parts
make up the test device (Fig. 6b)

— 1 and 4: fastening jaws;

— 2: bridle fixed on jaw;

— 3: rod guide;

— 5: sole plate fixed on specimen.

Creep tests results at different preloads are presented in
Figure 7. All experimental results are obtained for 160 h
at various stresses from 0.5 MPa to 2.5 MPa. These curves
show the instantaneous elastic deformation at the begin-
ning of the test. These elastic deformations increase with
the preload. The strain rate depends on time and preload.

To better observe relations between creep curves using
a shift factor, these curves are transformed into a semi-
logarithmic scale representation (Fig. 8). The compliance
modulus presented in Figure 8 is the reduced creep strain

(Eq. (13)).

4
125

Fig. 6. Scheme of specimen and test device. (a) Normalized
Specimen “Haltere — H2” for creep tests (dimension in mm).
Thickness = 2.5 mm; useful length = 20 mm. (b) Setting of
specimen.

A long term creep test is performed at a reference
preload of 2.5 MPa and with duration of about 115 days
(Fig. 9). This curve is considered as a master curve and
can be plotted using time-stress superimposition by us-
ing a convenient shift factor expression with short term
creep curves. Thus, this approach enables us to complete
a master curve over a long time period. This master curve
displays the material behaviour over a wide time range.
In Figure 9, a discrepancy can be denoted at long time
between shifted curve with classical constant horizontal
shift factor A\(o,,) (classical theory Eq. (14)) and the ex-
perimental long term curve at a preload of 2.5 MPa. We
characterise this discrepancy by defining the error F as
follows

C2 By

AQCQ

(C3Bg) characterizes the difference between the long term
experimental curve and the curve obtained from short
time tests using classical shift factor \(oy,,). (A2C2) char-
acterizes the shifted time between the long term experi-
mental curve and the short term one.

We mention that the error E between these two curves
is unacceptable and higher than 1600 % (Fig. 9). Hence,
we developed an extended expression for the shift factor
which takes into account time (Eq. (19)).

Figure 10 shows the time shift factor evolution be-
tween a reference curve at 2.5 MPa and curves at 0.5 MPa,
1 MPa and 1.5 MPa. We observe a constant shift fac-
tor at short time intervals. However the shift factor

E= (20)
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Fig. 7. Creep tests of an elastomer at different preloads.
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Fig. 8. Creep tests of an elastomer at different preloads.

decreases with time over long periods. We should note
that the shift factor is considered after the instantaneous
response in the creep curves. To present a quasi-constant
shift factor at short and very long time periods with a
transition domain which is illustrated in Figure 10, we
choose relation (21) for fitting the shift factor according
to Equation (19).

C(on,t) = Aon) |1 - 2 arctan (e“%)]

= (21)

In the above relation, F),(t) is taken to be:

2t t
F,(t) = F(op,t) = - arctan (eaTb)

a, and b are material’s constants independent of stress
levels which are given through stress step tests. Function
F(o,t) is mapped out with a set of curves fitting time
dependent horizontal shift factors as function of time at
various stress steps (see Fig. 10).

5 Conclusions

In this work we have first outlined the progress in
modelling nonlinear elastomer behaviour. We have re-
viewed the basic approaches. We stress nonlinear vis-
coelasticity in terms of behavioral non linearity. A funda-
mental approach based on the Schapery model, involving
a functional approach is described. Modelling based on
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Fig. 10. Time dependant horizontal shift factor fitting for a reference creep curve at 2.5 MPa and a creep curve at 0.5 MPa,
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this method is intuitive and easier as regards experi-
mental identification. In addition, most of the models so
far developed have relied on the functional approach. In
this context, we propose an expanded form of the sim-
plified Schapery model to better characterise the creep
behaviour for an elastomer. In general, no single “best
model” exists. However, various models are valid for par-
ticular materials and in specific circumstances.

A characterisation of the non linear visco-elastic be-
haviour of an elastomer is presented upon creep tests
conducted in the short term as in the long term at

different preloads. We have checked by means of the ex-
periments that creep functions at various constraints are
bound by a shift factor which usually depends on the
constraint and unusually of time. Hence, a decrease in
the shift factor’s variation with time over long period was
observed.

Thereafter, an original development generalising mod-
elling the nonlinear viscoelastic behaviour of elastomers
is developed. Accordingly, our work is based on a gen-
eralization of Schapery model involving the presence in
material of two free volumes respectively associated to
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micro level (molecular scale) and meso-level (carbon black
inclusions). By developing a time-stress equivalence ap-
proach, it is possible to predict the viscoelastic response
for material in service over long periods using measure-
ments obtained from short term creep tests.

We could calculate the creep behaviour for 115-day in-

tervals using creep tests for 7 days. This approach has re-
quired the development of an original convenient expres-
sion for a shift factor which is a function of both stress
and time. The prospect of developing this approach for
longer time periods and in three-dimensional models will
be of great utility for dimensioning complex structures.
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