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Abstract – An emerging research topic in civil engineering is the dynamic interaction between crowds and
structures. Structures such as footbridges, which oscillate due to the crossing of a group of pedestrians,
or stands within stadia or concert halls, which vibrate due to the rythmic movement of the audience
are of particular interest. The objective of this study is twofold: modelling the movement of pedestrians
with consideration of pedestrian-pedestrian, and pedestrian-obstacle interactions, and the incorporation
of a pedestrian-structure coupling in the previous model. Frémond’s model, which allows us to simulate
the movement of an assembly of particles and accounts for collisions among considered rigid particles, is
presented and adapted to the crowd by giving a willingness to the circular particles, which allows each
pedestrian to move according to a given target. To handle the crowd-structure interaction in the case of
lateral oscillations of footbridges, the Kuramoto differential equation governing the time evolution of the
lateral motion of each pedestrian is implemented in the previous model. Preliminary results obtained from
numerical simulations are presented and discussed.

Key words: Granular assembly / crowd / contact / crowd-structure interaction / synchronization /
footbridge

Résumé – Modèle pour l’interaction foule-structure. Un axe de recherches émergeant dans le do-
maine du génie civil est l’analyse et la modélisation des effets de la foule sur les ouvrages du génie civil. Cet
article traite de la modélisation de l’interaction dynamique foule-structure. Les structures particulièrement
concernées sont les passerelles piétonnes qui oscillent lors du passage d’un groupe de personnes ou les
gradins des stades et les salles de concert qui vibrent à cause du mouvement rythmé du public. L’objectif
de cet article est double : proposer un modèle de foule qui permet de gérer les mouvements des piétons
en prenant en compte les interactions locales piéton-piéton et piéton-obstacle puis réaliser un couplage
piéton-structure. Pour cela, nous avons retenu un modèle fondé sur les idées de Frémond, permettant ha-
bituellement de simuler le mouvement d’une assemblée de grains et capable de gérer les collisions entre
particules supposées rigides. Ce modèle est ensuite adapté à la foule en représentant les piétons par des
grains circulaires rigides �� actifs �� (permettant à chaque piéton de choisir sa direction). Enfin, pour te-
nir compte du couplage piéton-structure dans le cas des oscillations latérales des passerelles piétonnes,
le modèle mathématique de Kuramoto qui permet de gérer l’évolution du mouvement latéral de chaque
piéton, est retenu et implémenté. Les premiers résultats obtenus avec le modèle complet, appliqué à la
travée nord de la passerelle du Millenium à Londres sont présentés et commentés.
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Nomenclature

Roman letters
A lateral displacement’s amplitude of the structure (m)
Cstr modal (generalized) damping of the first lateral mode of the structure (kg.s−1)
C pedestrians’ sensitivity to bridge vibrations (m−1.s−1)
Djk distance between two objects j and k (m)
f forces applied to the system (heap of particles, crowd of pedestrians) (N)
Fj total lateral force applied by pedestrian j to the structure (N)
FT, j force applied by the jth pedestrian to the structure (N), tangential to the pedestrian’s motion
FN, j force applied by the jth pedestrian to the structure (N), normal to the pedestrian’s motion
i imaginary unit (i2 = −1)
Kstr modal (generalized) stiffness of the first lateral mode of the structure (kg.s−2)
L length (m)
l width (m)
m mass of one object (kg)
M mass matrix of the objects (kg)
Mstr modal (generalized) mass of the first lateral mode of the structure (kg)
n number of considered objects (particles or pedestrians)
Nj maximum amplitude of FN, j

p percussions of the system (N.s)
q coordinates of one object in the xy-plane
q̇ or u actual velocity of one object in the xy-plane (m.s−1)
r radius of a circular object (m)
Tj maximum amplitude of FT, j

ud desired velocity of one object in the xy-plane (m.s−1)

Ü lateral modal acceleration of the structure (m.s−2)

U̇ lateral modal velocity of the structure (m.s−1)
U lateral modal displacement of the structure (m)

v velocity u++u−
2

(m.s−1)
Greek letters
Δjk(u) relative deformation velocity between the jth and kth particles
Γ order parameter
Φ pseudopotential of dissipation (convex function) (N.m)
φ lateral total phase of one object (rad)

Φdiss pseudopotential which allows to define the dissipative percussions (N.m)
Φreac pseudopotential which allows to define the reactive percussions (N.m)
τ relaxation time of the considered reaction (s)
ψ first modal form of the structure
ψstr total phase of the lateral structure’s displacement (rad)
ω lateral angular frequency (rad.s−1)
θ angle between the actual velocity and the desired velocity of one object (rad)
Indexes
0 at initial time (t = t0)
1 first
a external acceleration
d desired
j indication of the jth object
k indication of the kth object
mod modified
str structure
step step
Exponents
+ after a contact
− before a contact
diss dissipative
ext exterior
int interior
reac reactive
x indication of the x-axis
y indication of the y-axis
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1 Introduction

1.1 Background

Several footbridges, recently built according to the ar-
chitectural criteria of lightness and elegance, have proven
to be sensitive to the excitation induced by the cross-
ing of pedestrians. Two examples very often mentioned
are the Millenium footbridge in London and the Solferino
footbridge in Paris. Several measurement campaigns have
allowed a better understanding of this phenomenon: the
crowd walking on a bridge causes to the structure to os-
cillate laterally with a frequency of about 1 Hz. When a
lateral mode of vibration of the bridge, often the first, has
a frequency close to this value, a resonance phenomenon
is activated. It follows that the amplitude of oscillations of
the bridge increases. If the number of pedestrians is small,
the amplitude of oscillations stays small and pedestrians
continue to walk as they would do on a rigid floor. Con-
versely, if this number is high enough, beyond a critical
number [1, 2], the oscillations amplitude becomes larger,
and pedestrians are forced to change their frequency of
walking to prevent falling. This leads to a frequency syn-
chronization phenomenon between pedestrians and struc-
ture. This frequency synchronization phenomenon is well-
known for lateral oscillations of a bridge [2–6], while it is
not observed for the vertical direction [2, 7].

The behavior of a pedestrian is also influenced by the
surrounding crowd: if the density of the crowd is very
low, the walking is “free”, i.e. each person walks as if
there were nobody close to him. Conversely, if the crowd
is dense, the pedestrian is forced to walk “at the same
speed” as the others. This pedestrian-pedestrian synchro-
nization can occur in both cases of rigid and moving floor.
Very few studies taking simultaneously into account both
types of synchronization can be found in the literature.

1.2 State of the art

Over the last fifty years, many studies have been
performed to describe the behavior of walking pedes-
trians [8, 9]. To reproduce some observed phenomena
(counter flow lines, formation of arches, etc.), several
models of crowd movements have been developed. These
models can be classified according to different crite-
ria: (i) the mode of representation of the crowd with
macroscopic models where the crowd is represented as
a whole [6, 10] or with microscopic models [11–17] when
the behavior, the actions and the decisions of each crowd
member are treated individually; (ii) the representation
of the area of displacement, either continuous [11, 13–17]
or discretized space [12]; (iii) the representation of the
contact, either by using regularizing laws [13–15] or by
solving a local non linear problem [11]; (iv) the representa-
tion of pedestrian movement by means of rules [11,12,16],
data [17, 18] or forces [13–15]; (v) the target phenom-
ena to be analyzed, either melees [11, 15] or counter flow
lines [11,13–15,17] or evacuation [11,14,15]; (vi) the type

of crowd walking, either normal walking velocity [13–
15,17, 18] or emergency walking [11, 14, 15]; etc.

Concerning the pedestrian-structure coupling, some
authors started modelling the dynamic loading of a single
pedestrian on a vibrating structure. The human body can
be seen as a very complex mechanical system, composed
of several parts in mutual interactions [19]. It is therefore
necessary to find a good compromise between the require-
ment of simplicity of the model of pedestrian and the re-
quirement to properly reproduce a complex phenomenon
such as synchronization between pedestrians and struc-
ture. Erlicher et al. [20] proposed a self-sustained single
degree of freedom oscillator able to accurately predict the
lateral walking force. Abrams [5] represented the action
of a pedestrian on a bridge with a sinusoidal lateral force
with an amplitude of 35 N and the evolution of its total
phase is managed by a differential equation of Kuramoto.
Bodgi [1] was inspired by this equation to achieve an orig-
inal model of pedestrian-structure coupling.

The aim of this paper is to build a 2D crowd-structure
interaction model, able to reproduce the synchroniza-
tion effect due to the pedestrian-footbridge coupling. The
model can also be used to study the problems of evacua-
tion of stadia and concert halls.

This paper is divided in two parts. The first one is
devoted to a brief presentation of a discrete 2D model
for the crowd using a discrete element method to manage
the movement of pedestrians in a xy-plane. The second
part deals with the enhancement of the previous model by
adding the pedestrian-structure coupling equations. The
coupled model is then detailed and finally applied to the
case of the Millenium bridge.

2 2D discrete crowd model

The approach proposed is discrete, i.e. a “microscopic”
model of crowd is chosen, in which the movement of ev-
ery pedestrian is represented in time and in space. The
interactions of one pedestrian with the surrounding envi-
ronment (other pedestrians, obstacles, moving floor) are
treated locally.

We propose to model the contact among pedestrians
with a granular medium model. A granular medium is
by definition a set of particles that are submitted to ex-
ternal forces (e.g. the gravitational force), and interact
each other by contacts with or without friction and with
or without cohesion. Most of models which are able to
deal with multiple simultaneous collisions, can be classi-
fied into two categories according to the way the contact is
treated: the regular “smooth” methods [21–24] where the
contact forces arise by a direct calculation, and the non
regular “non-smooth” methods [25–32], in the line of the
works of Moreau [33,34], where the calculation of contact
forces is given by the solution of a nonlinear minimization
problem.

In this paper, it has been chosen to treat the contact
problem by a non-smooth model based on the theory of
Frémond [26, 32]. This model is able to consider elastic
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or inelastic collisions, to add regular forces acting on the
system (for instance due to interactions without contact)
and to represent an object by an arbitrary form (circular,
polygonal, elliptical).

2.1 Frémond’s model

Let us consider a system consisting of n circular par-
ticles, of center tqj(t) = (qxj (t), q

y
j (t)) ∈ R2 and ra-

dius rj for the particle j. The velocity of the jth particle
is noted: uj(t) = dqj(t)

dt . The relative deformation veloc-
ity between the jth and kth particles is also introduced:
Δjk(u(t)) = uj (t) − uk (t).

Two major steps in the modelling must be analyzed:
the detection and the treatment of every contact.

The detection is straightforward in the case of circular
particles. We define the distance Djk between two parti-
cles j and k by:

Djk(q) = |qk − qj | − (rj + rk) (1)

where tq = (tq1,
t q2, ...,

t qn) and |qk − qj | =√(
qxk − qxj

)2 +
(
qyk − qyj

)2.
There is a contact between particles j and k when

Djk(q) = 0, and an overlap when Djk(q) < 0. Effi-
cient techniques for detecting contacts [30, 35] or closest
neighbours are necessary when the number of particles
increases in order to reduce the computational time.

Concerning the local treatment of contacts, the model
proposed by Frémond [26,32] has been retained. This orig-
inal model is based on the theory of rigid bodies collisions
and takes place in the line of the works of Moreau [33].
The numerical aspects were later developed in [36, 37].

Let us consider the set of n particles as a deformable
system composed of n rigid solids. The motion equations
of the system are:

⎧⎨
⎩

Mu̇(t) = f int(t) + f ext(t) almost everywhere (2)

M
(
u+(t)−u−(t)

)
=pint(t)+pext(t) everywhere (3)

where M is the 2n × 2n mass matrix of the parti-
cles; u is the velocity vector of dimension 2n, tu =
(tu1,

t u2, ...,
t un); the indices − and + refer to values be-

fore and after collisions; f ext (resp. f int) is the vector
of dimension 2n of exterior forces (resp. interior forces)
applied to the system.

Equation (2) applies almost everywhere except at the
instant of the collision and is replaced by Equation (3).
When contact is detected, velocities of colliding particles
are discontinuous and we introduce in Equation (3) inte-
rior pint and exterior pext percussions of the system. By
definition, percussions have the dimension of a force mul-
tiplied by a time. The pint percussions are unknown; they
take into account the dissipative interactions between the
particles which are colliding (dissipative percussions), and
the reaction forces in order to avoid overlapping among
particles (reactive percussions). Frémond [26, 32] showed

that these interior percussions are defined in duality with
the velocity of deformation at the moment of impact
Δ(u+)+Δ(u−)

2 , in the sense of the work of internal forces.

pint depends on Δ(u+)+Δ(u−)
2 and Frémond used a pseu-

dopotential of dissipation Φ (convex function [38]) defined
as: Φ = Φdiss + Φreac where Φdiss and Φreac are two pseu-
dopotentials which allow to define the dissipative and re-
active interior percussions respectively, for their expres-
sion:

pint ∈ ∂Φ

(
Δ(u+) + Δ(u−)

2

)
(4)

where the operator ∂ is the subdifferential which gen-
eralizes the derivative for convex functions [32]. The
pseudopotential Φdiss is chosen to be quadratic: Φdiss =
k
2

(
Δ(u+)+Δ(u−)

2

)2

.

To find the velocity after collision of grains u+, we
have to solve the following constrained minimization
problem:

v =
arg min

w ∈ R2n

[
twMw + Φ(Δ(w))

−t(2u− + M−1pext)Mw
]

(5)

where the solution v = u++u−
2 .

The existence and uniqueness of the solution are
demonstrated in [26, 32, 37] and the minimization prob-
lem (5) is numerically solved using a time-stepping
scheme and the classical Uzawa algorithm [37].

2.2 Adaptation of the granular model to the crowd

A pedestrian can be represented as a grain by giving it
a willingness, i.e. a desire to move in a particular direction
with a specific speed at each instant. In order to define
the desired trajectory of one pedestrian, several strategies
can be chosen: either the most comfortable trajectory for
him or the shortest path or the fastest path to move from
one place to another [14].

The desired direction ed,j of an individual j depends
on the evolution space (obstacles, etc.), the time and also
the characteristics of the individual (gender, age, hurried
steps or not, etc.). It is defined by: ed,j = ud,j(t)

‖ud,j‖ , where
ud,j is the desired velocity of the jth pedestrian. The
strategy of the shortest path to get from one point to
another [39] is implemented through a Fast Marching al-
gorithm and allows us to find ed,j .

The amplitude ‖ud,j‖ of the desired velocity repre-
sents the speed at which the jth pedestrian wants to move
on the considered structure. It depends on the desired step
length Lstep,0,j of the jth pedestrian and on the lateral
angular frequency ωj of his free desired walking [1]:

‖ud,j‖ =
Lstep,0,j

π
ωj (6)
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Fig. 1. Representation of the trajectories of two identical pedestrians i and j moving into opposite directions, τi = τj = 2 s.
After the collision, for each pedestrian, the external acceleration force allows pedestrian to gradually switch from the actual
velocity after choc to the desired velocity.

To adapt Frémond’s model to the crowd, we introduce
an external acceleration force f ext

a (t) [15] that gives a de-
sired direction and intensity of the velocity to each pedes-
trian (Fig. 1). The generic component f ext

a,j (t) of the force:
tfext

a = (tfext
a,1 ,

t fext
a,2 , ...,

t fext
a,n) of dimension 2n, is associ-

ated with pedestrian j and can be expressed as:

f ext
a,j (t) = mj

‖ud,j‖ed,j (t) − uj (t)
τj

(7)

where uj is the actual velocity; τj is a relaxation time,
allowing to recover the desired velocity after a contact.
Smaller values of τj let the pedestrians walk more aggres-
sively [40]. For numerical simulations, τj is taken equal to
2 s.

The pedestrians’ behavior can be enriched with the
addition of other external social forces [41] in order to
become more realistic.

2.3 Simulations

Some self-organisation phenomena occurring in pedes-
trian crowds, already analyzed in [9, 11], can also be re-
produced by the adapted Frémond’s model. This paper
will focus on two phenomena: the occurrence of lanes of
uniform walking direction in crowd of pedestrians moving
into opposite directions and the formation of pedestrian
arches around an exit in the case of a panic escape of
confined pedestrians. In both cases, we choose that the
desired velocity of each jth pedestrian follows a Gaus-
sian distribution of average 1.34 m.s−1 and of standard
deviation 0.26 m.s−1 [10]. This corresponds to a normal
walking velocity.

For the first phenomenon, we simulate a melee of
1500 pedestrians. Initially, the pedestrians are randomly

(a)

(b)

Fig. 2. Adapted Frémond’s model – simulation of a melee with
1500 pedestrians – (a) at time t = 0 s, (b) at time t = 40 s.

positioned in a rectangular domain of 80 m in length and
25 m in width. 750 pedestrians in filled blue circles want
to move to the left and 750 others in empty red circles
to the right (Fig. 2). To keep the number of pedestri-
ans walking on the considered domain constant, once a
pedestrian exits the room on one side, a similar pedes-
trian enters the room with a random position along the
y-axis on the other side.

We can observe the formation of counter flow lines
where pedestrians do not keep some distance between
them. The number of forming lanes depends on the width
of the walkway and on the pedestrian density [9, 15, 41].
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(a) (b) (c)

Fig. 3. Adapted Frémond’s model – simulation of a room evacuation – formation of an arch – (a) at time t = 0 s with
200 pedestrians, (b) at time t = 6 s with 187 pedestrians, (c) at time t = 12 s with 166 pedestrians.

For the second phenomenon, we consider a square
room of side 20 m, where 200 pedestrians want to escape
by the right side (Fig. 3).

We observe the formation of an arch as it has been
experimentally observed in the case of mice in an emer-
gency situation. In our case of an evacuation with nor-
mal walking velocity, regular exterior forces have to be
added to the adapted Frémond’s model, as in Helbing’s
model [9, 15, 40], in order to obtain a more realistic sim-
ulation with pedestrians keeping some distance between
them when their density is not too high.

3 Crowd-structure interaction

In this section, the model previously presented for the
crowd is enhanced in order to manage the crowd-structure
interaction. The final model must be able to represent
the behavior of the footbridge, each pedestrian j and the
pedestrian-structure coupling.

It is first assumed that the floor is flat and horizon-
tal; the main axis (longitudinal) of the bridge is straight,
so we define a Cartesian coordinate system with x-axis
which is parallel to the main axis, the z-axis vertical and
the y-axis oriented accordingly; the floor oscillation takes
place in the horizontal plane (xy-plane); its longitudinal
oscillation is negligible and its displacements are supposed
constant along the y-axis; the pedestrians are walking in
the xy-plane. Only the pedestrian and bridge lateral os-
cillations are considered and the x, y and z displacement
components are then assumed to be decoupled. We as-
sume finally that the forces applied by the two legs of one
pedestrian to the floor are identical.

The first section is devoted to the presentation of the
differential equations governing the crowd-structure inter-
action. A model similar to the one proposed by Bodgi [6]
is used, consisting of n+ 1 equations: one of the dynamic
of the structure with excitation due to pedestrian and, for
each pedestrian one differential equation of Kuramoto [2]
relative to his walking oscillations. In the second section,
the whole model is applied to the walking of pedestri-
ans on the north span of the Millennium Footbridge in
London.

3.1 Coupling model

Let Uy(qx, t) be the footbridge lateral displacement
at position qx along x-axis and at time t. The pro-
jection onto the first lateral mode shape of the foot-
bridge leads us to write: Uy(qx, t) = U(t)ψ1(qx) where
U(t) = A(t) sin (ψstr(t)) is the lateral modal displace-
ment of the footbridge with total phase ψstr(t) and am-
plitude A(t), and ψ1(qx) is the first lateral modal shape
of the footbridge, with max (ψ1(qx)) = 1. The displace-
ment history U(t) is assumed to be a chirp: A(t) is a
slowly varying quantity when compared to ψstr(t), then
the time derivative of U can be approximated by: U̇(t) �
A(t)ωstr cos (ψstr(t)) where ωstr is the angular frequency
of the first lateral mode of the structure, and A(t) can be

expressed by A(t) =
√
U2(t) + U̇2(t)

ω2
str

.
To take into account the oscillations of the structure in

the crowd movement model, the amplitude of the desired
velocity of the jth pedestrian in equation (6) is modified
and will be noted ‖ud,j ‖mod(t). It depends on A(t) and
ψstr(t) through the instantaneous step length Lstep,j(t)
and the instantaneous angular frequency φ̇j(t) of the jth
pedestrian:

‖ud,j‖mod(t) =
Lstep,j(t)

π
φ̇j(t), (8)

and Lstep,j(t) is chosen dependent on A(t):

Lstep,j(t) = Lstep,0,j max
(

1 − A(t)
Amax,j

, 0
)

(9)

where Amax,j is the maximum amplitude of the lateral
displacement of the footbridge that the jth pedestrian
can tolerate. When A reaches Amax,j , oscillations are so
important that the jth pedestrian stops walking.

We choose a differential equation of Kuramoto [1,2] to
govern the evolution of the total phase φj(t) of the walk-
ing force generated by the jth pedestrian on the bridge:

φ̇j(t) = ωj + C A(t) sin
(
ψstr(t) − φj(t) +

π

2

)
(10)
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where C quantifies pedestrians’ sensitivity to bridge vi-
brations.

In Equation (10), pedestrians are sensitive to foot-
bridge displacement amplitude A(t) as proposed in [2];
it should be noted that in [1], they are sensitive to foot-
bridge acceleration.

Synchronization can be seen as an adaptation of the
frequency of the force generated by a pedestrian to the
frequency of the structure; hence, the use of a differ-
ential equation which allows the instantaneous angular
frequency of the pedestrian to converge to that of the
structure. For a walking on a rigid floor, this equation is
reduced to: φ̇j(t) = ωj .

Finally, the equation which describes the dynamic of
the footbridge projected onto its first mode shape is:

⎡
⎣Mstr +

n∑
j=1

mjψ
2
1(q

x
j (t))

⎤
⎦ Ü(t) + CstrU̇(t) +KstrU(t) =

n∑
j=1

ψ1(qxj (t))Fj(t) (11)

with the following initial conditions, at time t = t0:
U0 = U(t0), U̇0 = U̇0(t0) and where Mstr, Cstr and Kstr

are the modal (generalized) mass, damping and stiffness
of the lateral first mode of the footbridge, respectively;mj

the mass of the jth pedestrian; n the number of pedestri-
ans on the footbridge; Fj the amplitude of the total lateral
force applied by the jth pedestrian to the footbridge.

As each pedestrian is walking in the xy-plane, the
force applied by the jth pedestrian on the floor includes
a normal FN,j and a tangential FT,j component to the
pedestrian’s motion. We assume that each pedestrian im-
parts an alternating (sinusoidal) sideways force to the
bridge [2]. As the frequency of FT,j is usually considered
as twice the frequency of FN,j [1], the expression of Fj
can be written as follows:

Fj(t) = t
(
FT,j(t)ej(t) + FN,j(t)e⊥

j (t)
)
ey

= t
(
Tj sin (2φj(t)) ej (t) +Nj sin(φj(t))e⊥

j (t)
)
ey

= Tj sin (2φj(t)) sin(θj(t)) +Nj sin(φj(t)) cos(θj(t))
(12)

where Tj (resp. Nj) is the maximum amplitude of FT,j

(resp. FN,j); ej (resp. e⊥
j ) is the unit direction vector

of the jth pedestrian’s motion (resp. normal to the jth
pedestrian’s motion), ej = uj (t)

‖uj‖ ; ey is the unit direction
vector of the lateral motion of the footbridge; θj(t) is the
angle between the direction of the jth pedestrian’s motion
and the direction of the longitudinal axis of the bridge.

To solve the previous system of differential equations,
equations (10) and (11), a state representation is first used
by introducing the state vector z = t (U, V, φ1, ..., φn). We
get:

ż =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U̇

V̇

φ̇1

...

φ̇n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
n∑

j=1
ψ1(qx

j (t))Fj(t)−CstrU̇(t)−KstrU(t)

Mstr+
n∑

j=1
mjψ2

1(qx
j (t))

ω1 + C A(t) sin
(
ψstr(t) − φ1(t) + π

2

)
...

ωn + C A(t) sin
(
ψstr(t) − φn(t) + π

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)
Then, the explicit method of Runge-Kutta of 2nd and
3rd order based on the Bogacki-Shampine method is ap-
plied to Equation (13) (ode23 toolbox of the MATLAB
software).

3.2 Numerical simulations

In this section, we apply the presented model to sim-
ulate the pedestrians’ walking on the north span of the
Millennium Footbridge in London, of length L = 81 m
and width is l = 4 m. The values of the model parame-
ters are: rj is chosen randomly between [0.3 m, 0.35 m]
which represents the case of a pedestrian warmly dressed
with a backpack [18], mj = 230πr2j (in kg), Lstep,0,j

follows a normal distribution with mean value 0.71 m
and standard deviation 0.071 m [42], Nj = 35 N [1, 43],
Tj = 120 N [43], Mstr = 113 000 kg, Cstr = 11 000 kg.s−1,
Kstr = 4 730 000 kg.s−2, ωj follows a normal distribu-
tion with mean value 2π × 1.03 rad.s−1 (1.03 Hz being
the modal frequency of the north span) and standard de-
viation 2π × 0.094 rad.s−1, φj is chosen randomly be-
tween [−π, π] with mean value zero, U0 = 0, U̇0 = 0,
Amax,j = 0.2 m, C � 16 m−1.s−1 [2]. As in [2], the first
lateral modal shape is neglected: ψ1(qxj (t)) = 1.

When few pedestrians are walking on the footbridge
(about 100, Fig. 4a), the lateral displacement of the struc-
ture stays small (Fig. 4d). Only some pedestrians are
synchronized with the footbridge displacement (Figs. 4b
and 4c), but not enough to trigger the phenomenon of
synchronization.

To estimate the degree of coherence of the pedestrian
phase, we compute then the order parameter Γ (t) intro-
duced in [2]:

Γ (t) =
1
n

∣∣∣∣∣∣
n∑
j=1

ei φj(t)

∣∣∣∣∣∣ (14)

An increase of this parameter reflects the fact that pedes-
trians synchronize one by one with the structure to reach
a maximum number of synchronized pedestrians (Γ = 1).
For each number of pedestrians on the bridge, when there
is synchronization, the calculation of the order parame-
ter gives the lower limit of percentage of synchronized
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(b)

(a)

(d)

(c) (e)

Fig. 4. A crowd of 100 pedestrians crossing the north span of Millenium bridge – full model (adapted Frémond’s model +
Kuramoto equations) – (a) representation of the 100 pedestrians on the footbridge; (b) time evolution of the instantaneous

frequency
φ̇j(t)

2π
for synchronized pedestrians (30) with the structure. The blue curve in bold represents the instantaneous

frequency of the loaded structure; (c) time evolution of the instantaneous frequency
φ̇j(t)

2π
for not synchronized pedestrians (70)

with the structure; (d) time evolution of the lateral displacement of the structure U(t); (e) time evolution of the order parameter.

pedestrians. Figure 4e shows that the order parameter
for the 100 pedestrians remains low and therefore the phe-
nomenon of synchronization is not triggered.

Conversely, when the number of pedestrians is high
enough, for instance about 180 pedestrians (Fig. 5a),
the lateral displacement of the footbridge increases when
the phenomenon of synchronization is triggered (Figs. 5d
and e). 170 pedestrians are synchronized with the foot-
bridge displacement (Figs. 5b and c). In Figure 5d, the
amplitude of the lateral footbridge’s displacement reaches
a threshold after a transition period. In Figure 5e, we note
that the evolution of the order parameter is consistent
with that of the amplitude of lateral displacement of the
bridge (Fig. 5d).

After several simulations of our 2D model, the critical
number of pedestrians, i.e. the minimal number of pedes-
trians walking on the bridge triggering the phenomenon
of synchronisation, is numerically estimated between 160
and 180. These values are in agreement with the results
found experimentally by Arup [44, 45] and numerically
by [1, 2]. In [1, 2] the authors proposed also an analyti-
cal expression of the critical number, depending on the
maximum lateral force transmitted by the pedestrians,
on a pedestrians’ sensitivity parameter to the bridge vi-
brations and on the bridge mechanical and geometrical
characteristics.

4 Conclusion

This paper presented a 2D coupled model for describ-
ing the interactions between pedestrians and a structure.
In the first part of the paper, the 2D displacement of
each pedestrian on a rigid floor is handled by an adapted
granular media model based on the theory of collisions of
rigid bodies developed by Frémond. In the second part,
the pedestrian-structure interaction is described with par-
ticular attention to the walking lateral oscillation of each
pedestrian. Simulations with the full model allowed us
to reproduce some existing numerical and experimen-
tal results: the formation of counter flow lines and the
phenomenon of arches in the case of rigid floors, with-
out crowd-structure interaction, and the phenomenon of
locking when crowd-structure interaction is taken into ac-
count.

These encouraging results should be further validated
by applying the proposed model to other structures than
the Millenium bridge. Moreover, an interesting character-
istic of the proposed model is the possibility of studing the
phenomenon of pedestrian-pedestrian synchronization de-
pending on the density of pedestrians, and evaluating its
influence on the phenomenon of crowd-structure synchro-
nization.
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(b)

(a)

(d)

(c) (e)

Fig. 5. A crowd of 180 pedestrians crossing the north span of Millenium bridge – full model (adapted Frémond’s model +
Kuramoto equations) – (a) representation of the 180 pedestrians on the footbridge; (b) time evolution of the instantaneous

frequency
φ̇j(t)

2π
for synchronized pedestrians (170) with the structure. The blue curve in bold represents the instantaneous

frequency of the loaded structure; (c) time evolution of the instantaneous frequency
φ̇j(t)

2π
for not synchronized pedestrians (10)

with the structure; (d) time evolution of the lateral displacement of the structure U(t); (e) time evolution of the order parameter.
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[17] S. Paris, J. Pettré, S. Donikian, Pedestrian reactive
navigation for crowd simulation: a predictive approach,
Comput. Graph. Forum 26 (2007) 665–674
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[32] M. Frémond, Collisions, Edizioni del Dipartimento di
Ingegneria Civile dell’Università di Roma Tor Vergata,
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de la plasticité, C. R. Acad. Sci. Paris 271 (1970) 608–611

[39] R. Kimmel, J.A. Sethian, Fast marching methods for
computing distance maps and shortest paths, Technical
Report 669, CPAM, University of California, Berkeley,
1996

[40] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamic fea-
tures of escape panic, Nature 407 (2000) 487–490

[41] D. Helbing, I. Farkas, P. Molnár, T. Vicsek, Simulation of
pedestrians crowds in normal and evacuation situations,
M. Schreckenberg and S. Deo Sarma (Ed.), Pedestrian
and evacuation dynamics, 2002, pp. 21–58

[42] S. Zivanovic, A. Pavic, P. Reynolds, Probability-based
prediction of multi-mode vibration response to walking
excitation, Eng. Struct. 29 (2007) 942–954

[43] T.P. Andriacchi, J.A. Ogle, J.O. Galante, Walking speed
as a basis for normal and abnormal gait measurements,
J. Biomech. 10 (1977) 261–268

[44] P. Dallard, A.J. Fitzpatrick, A. Flint, A. Low, R.M.
Ridsdill-Smith, The Millenium bridge London – problems
and solutions, The Structural Engineer 79 (2001a) 15–17

[45] P. Dallard, A.J. Fitzpatrick, A. Flint, A. Low, R.M.
Ridsdill-Smith, The Millenium bridge London, The
Structural Engineer 79 (2001b) 17–33

doi:10.1016/j.ymssp.2009.11.006

	Nomenclature
	Introduction
	Background
	State of the art

	2D discrete crowd model
	Frémond's model
	Adaptation of the granular model to the crowd
	Simulations

	Crowd-structure interaction
	Coupling model
	Numerical simulations

	Conclusion
	References

