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Abstract – This paper presents a numerical study about lubricant inertia effect on thermohydrodynamic
(THD) characteristics of Rayleigh step bearings running under steady, incompressible and laminar condi-
tion. To reach this goal, the set of governing equations is solved numerically with and without considering
the inertia terms. The discretized forms of the momentum and energy equations are obtained by the finite
volume method and solved using the Computational Fluid Dynamic (CFD) technique. These equations are
solved simultaneously because the dependency of lubricant viscosity with temperature. The hydrodynamic
and thermal behaviors of the slider step bearings are demonstrated by presenting several figures including
the lubricant pressure and temperature distributions with and without considering the fluid inertia effect.
Numerical results show that inertia term has considerable effect on THD characteristics of step bearings,
especially when they run with high velocity of runner surface.
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1 Introduction

Hydrodynamic step bearings are widely used in in-
dustries to support axial loads efficiently. Many type
of step bearings were theoretically studied in the 1950s
by researchers in order to predict and improve their
performances.

In 1962, Dowson [1] introduced the generalized
Reynolds equation, which allows for cross-film temper-
ature variations. This equation was solved with realistic
THD boundary conditions by Ezzat and Rohde [2] us-
ing the finite difference method. In 1986, Boncompain
et al. [3] improved the numerical model by considering
reverse flow, fluid-film rupture and elastic deformations
(Thermoelastohydrodynamic solution). Auloge et al. [4]
studied the optimum design of Rayleigh step bearing and
determined the relationships between step location and
height along with non-Newtonian lubricants. The same
method was used by Fillon and Khonsari [5] in tracing
design charts for tilting-pad journal bearings. In 2002,
Arghir et al. [6] used a Reynolds-based numerical method
applicable to discontinuous geometrical domains, which
included a concentrated inertia effect model. The com-
plete energy and Navier- Stokes equations were solved
using the finite volume method and the SIMPLEC algo-
rithm. In that work, the discontinuity in film thickness,
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associated with the two refill grooves was neglected. Ex-
perimental studies of pressure distribution in finite slider
bearing with single continuous surface profile on the pads
were conducted by Sharma and Pandey [7]. The main
goal was to compare the experimental results of pres-
sure distribution in slider bearing with various single
continuous surface profiles of pads (cycliodal, cateniodal,
polynomial and plane). It was found that the pressure
generated by cycliodal profile pad is larger in compari-
son to the pressure obtained with other profile pads for
identical operating conditions. Tello [8] has theoretically
studied the regularity of the solution to the Reynolds
equation in Rayleigh step type bearings for both com-
pressible and incompressible fluids by employing a rig-
orous mathematical approach. There are many research
works in which the well known Reynolds equation was
solved by different numerical schemes in predicting the
lubricant pressure field in step bearings [9, 10]. Farmer
and Shepherd [11] have analyzed the isothermal opera-
tion of the Rayleigh step bearing, considering slip flow
condition. The influence of step geometry and degree of
slip on the pressure field and bearing performance has
been discussed. Naduvinamani and Siddangouda [12] have
also studied the effect of surface roughness on the hydro-
dynamic lubrication of porous step-slider bearings with
couple stress fluids theoretically. Rahmani et al. [13] com-
prehensively studied the Rayleigh step slider bearing in-
cluding the effect of pressure variations at the boundaries

Article published by EDP Sciences

http://dx.doi.org/10.1051/meca/2013065
http://www.mechanics-industry.org
http://www.edpsciences.org


276 M. Vakilian et al.: Mechanics & Industry 14, 275–285 (2013)

Nomenclature

b Bearing length u∗v∗ Dimensionless velocity components
b1 Upstream bearing length W Load capacity of bearing
b2 Downstream bearing length xy Horizontal and vertical coordinates
Cp Heat capacity x∗y∗ Dimensionless coordinates
F Friction force of bearing
h1 Upstream film thickness

Greek symbols
h2 Downstream film thickness η Friction coefficient
h3 Step height ηM Modified friction coefficient
Kf Thermal conductivity μ Dynamic viscosity
L Width of bearing μ∗ Dimensionless dynamic viscosity
o Origin of coordinate μ1 Dynamic viscosity at T1 = 40 ◦C
p Pressure μ2 Dynamic viscosity at T2 = 100 ◦C
p∗ Dimensionless pressure ν Kinematic viscosity
Pr Prandtl number ρ Density
Pe Peclet number τ Shear stress
Re Reynolds number
T Temperature

Subscripts
T ∗ Dimensionless temperature in Inlet
U Runner velocity max Maximum
uv Velocity components s Surface

on the bearing hydrodynamic characteristics. The bear-
ing is also optimized considering the lubricant flow rate,
friction force and friction coefficient. Lee and Kim [14]
calculated the air film temperature of Rayleigh step air
foil thrust bearing by solving the Reynolds equation and
3D energy equation with THD boundary conditions at
the top foil, thrust disc, and cooling air plenum. By using
non-Newtonian fluid as lubricant, the pressure distribu-
tion and load capacity for Rayleigh step bearing has also
been investigated.

In all of the above studies, the Reynolds equation
was solved as the governing equation for calculation of
lubricant pressure distribution in bearing lubricant flow.
This equation is a simplified form of the momentum equa-
tion by neglection of fluid inertia terms. It is clear that
under the condition of low lubricant viscosity and high
runner surface velocity, this equation may lead to un-
reliable results. The present study which is a continua-
tion of the work of the second author performed in ref-
erence [15], deals with lubricant inertia effect on THD
characteristics of Rayleigh step bearings. To this end, the
momentum equations coupled with the energy equation
are solved with and without inertia terms. Comparison
between these results can show the accuracy of Reynolds
equation in prediction of step bearing characteristics.

2 Problem description

The schematic and coordinate system of Rayleigh
slider bearing is shown in Figure 1. The bottom wall of
the step bearing moves with constant velocity U (runner
velocity). The sudden change in film thickness generates
a hydrodynamic pressure field that supports an applied

Runner Surface U

b1 b2

h1

h3

pmax

pa

pb

o

y

x

h2

Discontinuity Line

W

b

Fig. 1. Sketch of problem geometry.

load W . At the inlet section, the oil film enters at 40 ◦C
with combination of Poiseuille and Couette flows.

Here, pa and pb are oil pressure at the inlet and outlet
sections of the bearing, respectively, which are equal to
atmospheric pressure. Two important geometrical factors
in step bearings are

ε =
b1

b
(1)

ξ =
h1

h2
(2)

In these explanations, ε and ξ represent step length and
step height ratios, respectively, which are considered to
be ε = 0.718 and ξ = 1.866 in the present computa-
tions [16, 17].
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3 Theory

3.1 Governing equations

For lubricant flow in bearings, the governing equations
which are written for a two-dimensional, steady, incom-
pressible, laminar and variable viscosity flow consist of
the continuity, Navier-Stokes and energy equations. These
equations can be written as:

∂u

∂x
+

∂v

∂y
= 0 (3)

ρ
∂

∂x

(
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∂u

∂x

)
+ρ
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∂x
+FBx (4)
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where FBx and FBy in momentum equations represent
the viscous source terms as follows [16]:
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∂
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Also φ denotes the viscous dissipation term according to
following formula:
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(9)

The variation of fluid viscosity with temperature is also
considered in the present analysis based on the Vogel
equation:

μ = μine−β(T−Tin) (10)

In this expression, β is the temperature-viscosity coeffi-
cient of the lubricant. The value of β is determined using
two given viscosity values at T1 and T2 as follows [16]:

β =
ln (μ1/μ2)
T2 − T1

(11)

3.2 Boundary conditions

The entire domain is fully flooded, such that oil pres-
sure at the inlet and outlet sections of the bearing is set
to zero atmospheric gauge pressure. Also the no-slip con-
dition is employed on all boundary solid walls.

At the inlet section, oil enters into the bearing with
uniform temperature of Tin and a specified velocity dis-
tribution which is a combination of the Poiseuille and
Couette flows with a pressure gradient which is obtained
iteratively. For this purpose, the Reynolds equation is
solved numerically for computing a good initial value for
lubricant pressure gradient. About the inlet oil tempera-
ture, it should be mentioned that for a given feeding oil
temperature, the lubricant temperature at the inlet sec-
tion will be increasing by decreasing in the value of mini-
mum oil film thickness, which will in turn, affect bearing
performance at high thrust loads. But as a simplified as-
sumption, it is assumed that the inlet oil temperature is
constant for step bearing running under different thrust
loads. It is evident that this assumption leads to accurate
results when bearing loads are light. Besides, at the out-
let section, zero axial gradients for all dependent variables
are employed.

Also, the temperature of runner surface is assumed to
be constant, which is computed from a zero global heat
flux balance at the fluid and runner surface interface [10]:

b∫
0

(
∂T

∂y

)
y=0

dx = 0

Finally, the adiabatic condition is imposed on the bearing
solid surface.

3.3 Nondimensional forms of the governing equations

In numerical solution of the set of governing equations
including the continuity, momentum and energy, the fol-
lowing dimensionless parameters are used to obtain the
nondimensional forms of these equations [15]:

(x∗, y∗) =
(

x

h1
,

y

h1

)
, (u∗, v∗) =

( u

U
,

v

U

)
,
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μ
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b
(T − Tin)

Re =
ρUh1

μin
, P e =

ρCpUh1

kf
=

Uh1

α

In these definitions, α is the thermal diffusivity of the
lubricant and μin is the inlet lubricant viscosity.

The nondimensional forms of the governing equations
in the Cartesian coordinate system are as follows:

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0 (12)
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where F ∗
Bx

and F ∗
By

represent the dimensionless viscous
source terms:
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and φ∗ is the dimensionless viscous dissipation term:
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Also the dimensionless oil viscosity based on vogel equa-
tion can be calculated as follows:

μ∗ = e−β
μiU

ρCph1

(
b

h1

)
T∗ (19)

3.4 Main physical quantities

The main physical quantities of interest in lubrication
study are the load capacity and friction force.

The load capacity of the step bearing per unit width
is obtained by further integration of lubricant pressure
distribution:

W

L
=

∫ b

0

pdx (20)

The friction force of the step bearing is calculated by the
shear stress on the bottom wall as follows:

F

L
=

∫ b

0

τs dx (21)

where:

τs = μ
∂u(x, y)

∂x
at y = 0 (22)

Now, the friction coefficient can be calculated from the
following relation:

η =
F

W
(23)

Fig. 2. A schematic of grid generation.
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Fig. 3. Solution dependence on grid size, ε = 0.718, ξ = 1.866,
b = 0.08 m, Re = 413.

4 Solution procedure

Finite difference forms of the continuity, momentum
and energy equations were obtained by integrating over
an elemental cell volume with staggered control volumes
for the x- and y-velocity components. Other variables of
interest were computed at the grid nodes. The nondimen-
sionalized governing equations were discretized by using
the hybrid scheme and numerically solved by the SIMPLE
algorithm of Patankar and Spalding [18]. Numerical solu-
tions were obtained iteratively by the line-by-line method
progressing in axial direction. The iterations were termi-
nated when the sum of the absolute residuals was less
than 10−4 for each equation. Numerical calculations were
performed by writing a computer program in FORTRAN.

As shown in Figure 2, the computational domain
is divided into three blocks, each having Nx points in
x-direction and Ny points in y-direction. The mesh is non-
uniform in x- and y-directions with the largest cell (being
the one furthest away from the step). The grid refinement
around the step is necessary to capture the occurrence of
the recirculation and other flow changes due to the sudden
change in geometry. As the result of grid tests for obtain-
ing the grid-independent solutions, an optimum grid for
each block is shown in Figure 3 and discretization details
for all of the cases presented in Table 1.

5 Validation of computational results

To test the validity of the present numerical results,
computations were carried out for two test cases and the
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Table 1. Grid independence study, ε = 0.718, ξ = 1.866,
b = 0.08 m, Re = 413.

Grid size Load capacity Friction force

(block1). (block2). (block3) (KN.m−1) (KN.m−1)

(100 × 20) (100 × 40) .(60 × 40) 17.116 0.2307

(120 × 20) (120 × 40) .(80 × 40) 17.443 0.2404

(140 × 30) (140 × 50) .(100 × 50) 17.560 0.2423

(200 × 40) (200 × 60) .(120 × 60) 17.588 0.2426

(200 × 50) (200 × 70) .(120 × 70) 17.602 0.2427

(220 × 50) (220 × 70) .(140 × 70) 17.607 0.2427

(240 × 50) (240 × 70) .(160 × 70) 17.610 0.2427

(240 × 60) (240 × 80) .(180 × 80) 17.612 0.2427

computed results were compared with theoretical results
of other investigators. The lubricant pressure and temper-
ature distributions along the axial direction are shown in
Figures 4 and 5. It should be mentioned that the values
of bearing geometrical parameters and also the lubricant
properties are given in the related literatures [9, 10].

Figure 4 shows the lubricant pressure distribution of
the bearing studied by Dobrica and Fillon [10]. The gen-
erated hydrodynamic pressure by the sudden contraction
in flow domain is clearly seen in this figure, such that the
lubricant maximum pressure takes place just at the en-
trance of narrow gap of the bearing. However, the agree-
ment between the present numerical results and numerical
data is quite good.

To validate the present computations for lubricant
temperature, the isotherm lines for a step bearing ana-
lyzed in reference [10] are plotted in Figure 5. The lubri-
cant temperature rise along the flow direction which is due
to viscous dissipation is clearly seen in this figure. Besides
this figure shows that the adiabatic boundary condition
for the bearing surface is almost realistic such that a good
consistency is seen between the isotherm patterns plotted
in Figure 5b based on the present numerical results with
those obtain in reference [10] shown in Figure 5a where
the conjugate problem containing conduction-convection
heat transfer in solid element and oil flow was solved.
However, comparison between these figures indicates an
overestimation about 8 ◦C in computation of maximum
oil temperature which is due to changing a conjugate
problem to a simple one with simplifying assumptions. If
one focuses to Figure 5, it is seen that the maximum dif-
ference between the present numerical results with those
obtained in reference [10] takes place near to the pad sur-
face where the effect of combined conduction-convection
heat transfer in the conjugate problem is enhanced.

In another test case, the computed lubricant pressure
distribution and also the temperature distribution on the
bearing surface are compared with the numerical results
of Hideki in Figure 6. A similar trend which was observed
before for the lubricant pressure in previous case test is
also seen in Figure 6, with a very good consistency be-
tween the present numerical results with those found by
Hideki [9].
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Figure 6 depicts that the lubricant temperature in-
creases along the flow direction because of the viscous
dissipation in both domains upstream and downstream
sides of the step. But Figure 6 shows a very high rate of
temperature increase after the step location in compar-
ison to the upstream region which is as a result of high
dissipation rate in lubricant film with small thickness and
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Table 2. Bearing parameters and lubricant properties.

Parameters Units Present work Reference [10]
b m 0.08 0.08
h1 μm 93–480 30–960
h2 μm 50–257 15–480
Tin

◦C 40 40
ρ kg.m−3 860 860

Cp J.kg−1.◦C 2000 2000

Kf W(m
−1.◦C) 0.13 0.13

μat 40 ◦C (N.s.m−2) 0.03 0.03
μat 100 ◦C (N.s.m−2) 0.0045 0.0045

ε – 0.718 0.5
ξ – 1.866 2

Re – 70–413 –

consequently with high velocity gradient. However, a good
agreement is observed between the present numerical re-
sults and the numerical findings by Hideki [9].

6 Results and discussion

In this paper, THD characteristics of Rayleigh step
bearings are obtained by numerical solution of the Navier-
Stocks and energy equations using the CFD technique. An
attempt is made for comparing the lubricant pressure and
temperature distributions and also some other dependent
variables with and without considering the fluid inertia.
All of the subsequent figures are about a Rayleigh step
bearing whose properties and geometrical parameters are
given in Table 2.

First the oil flow pattern inside the bearing is shown
in Figure 7 by plotting the fluid velocity vectors. The
adverse pressure gradient in the upstream flow domain
before the step location which leads to hydrodynamic
pressure generation causes a concave shape for velocity
distribution. Such that the velocity distribution changes

Fig. 7. Velocity vectors in step bearing lubricant flow, h2 =
275 μm, Re = 413.

to convex shape after the step where there is a favourable
pressure gradient. Behind the step surface near to the
stationary wall, a circulated flow domain appears which
is due to the effects of both viscous friction and positive
pressure gradient in this region. As another result that
can be seen from Figure 7, one can notice to the almost
stationary flow region in block 1 (see Fig. 2). Therefore,
the lubricant average velocity across blocks 2 and 3 re-
mains approximately constant.

The lubricant pressure distributions on the bottom
bearing wall along the axial direction are plotted in Fig-
ure 8 for two cases of considering and neglecting the fluid
inertia effect at different values of the Reynolds number
and the minimum oil film thickness.

All curves plotted in Figure 8 depict a same pattern
for pressure distribution such that there is an increasing
trend in lubricant pressure in upstream region to the bear-
ing step after which the lubricant pressure decreases up
to the bearing outlet section. This figure shows two op-
posite effects for inertia terms on lubricant pressure, such
that neglection of fluid inertia underestimates the value
of lubricant pressure in upstream region of the bearing
step and then it switches to overestimation downstream
the step.

Comparison between the curves plotted in Figure 8
shows that the inertia term has more effect on hydrody-
namic pressure at high Reynolds number, especially for
high values of lubricant minimum film thickness. Such
that the maximum different between the pressure dis-
tribution for these two cases is seen in Re = 413 for
h2 = 275 μm with an error of about 8% in predicting lu-
bricant maximum pressure. Besides, comparison between
the curves plotted in Figure 8 reveals that the amount
of hydrodynamic pressure generation in step bearing in-
creases in a high rate by decreasing in the minimum film
thickness.

Temperature distributions on the top wall of the bear-
ing surface and also at the oil film section y = h/4 along
the axial direction for two different runner velocities and
minimum oil film thicknesses are plotted in Figures 9
and 10 with inertia effect and in inertialess case.

These figures present that the lubricant inertia has
more effect on lubricant pressure in comparison to tem-
perature. It is seen that neglection of fluid inertia in-
troduces a very small underestimation in temperature
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Fig. 8. Lubricant pressure distribution on the bottom wall of
the bearing at three different values for the lubricant minimum
film thickness. (a) h2 = 275 μm. (b) h2 = 100 μm. (c) h2 =
50 μm.
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Fig. 9. Lubricant temperature distributions, h2 = 275 μm.
(a) Temperature distribution on the top wall of the bearing.
(b) Temperature distribution at the axial section y = h/4.

calculation, especially at small values of the Reynolds
number and minimum oil film thickness.

The effect of inertia in maximum lubricant pressure is
studied in Figure 11 with plotting the variation of Pmax

with Reynolds number in inertialess case and in the case
of considering inertia effect.

It is seen that Pmax increases with increasing in
Reynolds number with this fact that neglection of iner-
tia effect underestimates the value of maximum pressure
with about 14% maximum error that occurs at Re = 413.

Similar curves but for maximum lubricant tempera-
ture are plotted in Figure 12. This figure also shows that
inertia has not considerable effect in temperature calcu-
lation. However, it can be concluded that the fluid inertia
causes an increase in computing the value of Tmax, such
that Figure 12 shows about 0.4% for maximum error that
takes place at Re = 300 and not at Remax. It can be
due to nonlinear relation between the dissipation term in
energy equation with the lubricant velocity field.
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Fig. 10. Lubricant temperature distributions, h2 = 100 μm.
(a) Temperature distribution on the top wall of the bearing.
(b) Temperature distribution at the axial section y = h/4.
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Fig. 11. Variation of lubricant maximum pressure with
Reynolds number, h2 = 275 μm.
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Fig. 12. Variation of lubricant maximum temperature with
Reynolds number, h2 = 275 μm.

Finally the effects of fluid inertia on bearing load ca-
pacity and also on bearing friction force are shown in Fig-
ure 13. This figure shows small inertia effect on bearing
load capacity with maximum error of 2.5%, but a great in-
ertia effect on bearing friction force with errormax ∼ 8%.
Besides, it is seen that inertialess assumption underesti-
mates the values of both bearing load and friction force
such that the amount of underestimation increases by in-
creasing in Re.

Computations of load capacity, friction force and fric-
tion coefficient are repeated for smaller values of the lu-
bricant minimum film thickness i.e., h2 = 100 μm and
h2 = 50 μm, and the variations of these parameters with
Re are plotted in Figures 14 and 15. Similar trends are
found for load capacity and friction force such that the
rate of increase in these parameters with Re in much more
in the case with small value for minimum film thickness.
But it is seen that the friction coefficient decreases with
Re. It is due to this fact that the rate of increase in load
capacity with Re is greater than that is for friction force,
and according to the definition of the friction coefficient
(Eq. (23)), this parameter has decreasing trend with Re,
such that neglection of inertia enhances this behavior, es-
pecially at high values for minimum film thickness. If one
compares the curves plotted in Figures 13c, 14c and 15c,
it can be seen that for all values of the oil minimum film
thickness, the friction coefficient has a decreasing trend
with Reynolds number such that, the rate of decreasing is
much more for step bearings running under low Reynolds
number. Also it is seen that for step bearings running un-
der small minimum film thickness, the rate of decrease in
friction coefficient with increasing Re is much more.

7 Conclusion

A CFD based study is conducted to investigate the
lubricant inertia effect on THD characteristics of the
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Fig. 13. Variations of the load capacity, friction force and fric-
tion coefficient with Reynolds number, h2 = 275 μm. (a) Load
capacity. (b) Friction force. (c) Friction coefficient.
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capacity. (b) Friction force. (c) Friction coefficient.
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Fig. 15. Variations of the load capacity, friction force and fric-
tion coefficient with Reynolds number, h2 = 50 μm. (a) Load
capacity. (b) Friction force. (c) Friction coefficient.

Rayleigh step bearings. To this end, the set of govern-
ing equations is solved with and without considering the
inertia terms in momentum equations. Discretized forms
of the governing equations are obtained by the control
volume method and solved by the SIMPLE algorithm.
Numerical results show that THD characteristics of step
bearings are affected by fluid inertia, and that lubricant
pressure field is more affected than the lubricant temper-
ature. Numerical results reveal that the values of lubri-
cant maximum pressure and lubricant maximum temper-
ature and also the values of bearing load capacity and
friction force increase by the lubricant inertia effect. Such
that solution of the set of governing equations without
inertia term lead to underestimation in the values of the
above mentioned parameters, especially when step bear-
ings are running under high runner surface velocity and
large minimum film thickness.
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