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Abstract – Steady, laminar, conjugate natural convection flow in a square enclosure is considered. Both
effects: conduction in a vertical wall and the presence of a magnetic field are taken together. The enclosure
is filled with liquid gallium and subjected to horizontal temperature gradient. The main focus of the study
is examining the effect of Hartmann number on fluid flow and heat transfer. The effect of Rayleigh number
and conduction in the left wall is also considered. The obtained result show in the absence of a magnetic
field that natural convection can be strengthed by the increase of both Rayleigh number and conductivity
ratio, because of the increase of the effective temperature difference driving the flow. For poor conducting
wall, where the solid part is an insulated material and the thermal resistance is more important the average
Nusselt number is approximately constant and having low values comparing with equal and high conducting
wall, indicating that most of heat transfer is by heat conduction. In the presence of a magnetic field the
results show that for a given Rayleigh number, as the value of Hartmann number increases, convection is
suppressed progressively and the rate of heat transfer is reduced in the enclosure.

Key words: Conjugate natural convection / magnetic field / electrically conducting fluid / Square enclo-
sure / finit volume method

1 Introduction

Natural convection in enclosures is a topic of consid-
erable engineering interest. Applications range from ther-
mal design of buildings, to cryogenic storage, furnace de-
sign, nuclear reactor design, and others. The problem of
natural convection flow in a square and rectangular enclo-
sure with uniform temperature at vertical walls and insu-
lated top and bottom walls has been the subject of many
studies. The walls of the enclosure are assumed to be of
zero thickness and conduction is not accounted for this.
However, in many practical situations, especially those
concerned with the design of thermal insulation, conduc-
tion in the walls can have an important effect on the nat-
ural convection flow in the enclosure [1–3].

In addition the process of manufacturing materials in
industrial problems (for example, crystal growth using
the horizontal Bridgman technique) involves an electri-
cally conducting fluid subjected to a magnetic field (MHD
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convection). In that case the fluid experiences an electro-
magnetic force (Lorentz force) and its effect is to control
natural convection by reducing the flow velocity. This in
turn affects the rate of heat and mass transfer [4–6].

According to the above studies, we conclude that fluid
flow and heat transfer in enclosures are strongly influ-
enced by both effects: the presence of magnetic field and
thermal conduction in walls presenting a thickness.

In most of the studies presented in literature on natu-
ral convection in differentially heated cavity has not been
considered the above said effects together. The present
work aims to study the effect of wall thickness in a square
enclosure on natural convection of conducting fluid in the
presence of magnetic field. The cavity is filled with liquid
gallium (Pr = 0.02) and submitted to horizontal tem-
perature gradient. The applied magnetic field is assumed
to be in the horizontal direction. The main focus is on
examining the effect of Rayleigh number and conduction
in the wall, on fluid motion flow and heat transfer. The
effect of the magnetic field strength is also considered.
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Nomenclature

B Applied magnetic field T

D Dimensionless wall thickness D = d/H

F EM Lorentz force, N.m−3

H Wall height m

Ha Hartmann number

J Current density, A.m−2

Kr Thermal conductivity ratio Kr = kw/kf

kw Thermal conductivity of the solid wall w.m−1.K−1

kf Thermal conductivity of the fluid w.m−1.K−1

L Cavity length m

Nu Local Nusselt number

Nu Average Nusselt number

Pr Prandtl number of the fluid (υ/α)

Ra Rayleigh number gβH3(Th − Tc)/υα

T Temperature K

t∗ Time s

t Dimensionless time t∗/(H2/α)

u, v Velocity components m.s−1

U , V Dimensionless velocity components u/(α/H), v/(α/H)

V Dimensionless velocity of the flow

p Pressure N.m−2

P Dimensionless pressure p− p0/(α/H)2

X, Y Non-dimensional Cartesian coordinates, x/H, y/H

Greek symbols

α∗ Thermal diffusivity ratio αw/αf

β Thermal expansion coefficient K−1

θ Non-dimensional temperature (T − Tc)/(Th − Tc)

υ Kinematic viscosity m2.s−1

σ Electrical conductivity of the medium Ω−1.m−1

ψ Dimensionless stream function

ω Dimensionless vorticity

Subscripts

c Cold

f Fluid

h Hot

w Wall

wf Wall/fluid interface

2 Problem geometry and governing
equations

The geometry of the problem is shown in Figure 1. The
flow is two-dimensional, laminar and incompressible. All
fluid properties are constant. The electrically conducting
fluid is considered to be Newtonian. Viscous dissipation,
heat generation and radiation effects are neglected. It is
also assumed that the induced electric current and Joule
heating are neglected. The Boussinesq approximation is
applied : ρ(T ) = ρ0[1−β(T −T0)]. The uniform magnetic
field B of constant magnitude B0 is applied.

B = Bxex +Byey (1)

B0 =
(
B2
x +B2

y

)1/2
(2)

Adiabatic 

Adiabatic 

B Th Tc 

y 

L d x 0 

H 

Fig. 1. Physical configuration.

where ex and ey are unit vectors in Cartesian coordinate
system.

For a horizontal magnetic field By = 0 and Bx = B0.
The electric current J and the Lorentz force F EM are

defined respectively by:

J = σ(V × B) (3)
F EM = J × B = σ(V × B) × B (4)

The Lorentz force compounds for horizontal magnetic
field are:

FEMx = σ
(
v · Bx ·By − u ·B2

y

)
= 0

FEMy = σ
(
u ·Bx · By − v ·B2

x

)
= −σ v B2

0

}
(5)

The equations governing the conservation of mass, mo-
mentum and energy for an unsteady laminar flow in the
presence of a horizontal magnetic field are:

– Fluid part

∂u

∂x
+
∂v

∂y
(6)

∂u

∂t∗
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(7)

∂v

∂t∗
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)

+ gβ (Tf − T0) − σ v B2

ρ
(8)

∂Tf
∂t∗

+ u
∂Tf
∂x

+ v
∂Tf
∂y

= αf

(
∂2Tf
∂x2

+
∂2Tf
∂y2

)
(9)

– Solid part

∂Tw
∂t∗

= αw

(
∂2Tw
∂x2

+
∂2Tw
∂y2

)
(10)
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Introducing the following non-dimensional varibles:

(X,Y ) =
(x, y)
H

, (U, V ) =
(u, v)
α/H

,

t =
t∗

H2/α
, P =

(p− p0)
ρ0 (α/H)2

, θ =
T − Tc
Th − Tc

The non-dimensional form of Equations (6)–(10) are:

∂U

∂X
+
∂V

∂Y
= 0 (11)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ P r∇2U (12)

∂V

∂t
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ P r∇2V

+RaP r θf −Ha2P rV (13)

∂θf
∂t

+ U
∂θf
∂X

+ V
∂θf
∂Y

=
(
∂2θf
∂X2

+
∂2θf
∂Y 2

)
(14)

∂θw
∂t

= α∗
(
∂2θw
∂X2

+
∂2θw
∂Y 2

)
(15)

where α∗ = αw/αf is the thermal diffusivity ratio.
The effect of the electromagnetic field is introduced
into the equations of motion through Hartmann num-
ber Ha = B0H (σ/ρν)1/2.
The dimensionless form of the governing Equa-
tions (11)–(15) in vorticity-stream function form (ψ,
ω) can be written as:
– at t = 0; ψ = θw = θf = 0;
– for t > 0

– Fluid part

∂2ψ

∂X2
+
∂2ψ

∂Y 2
+ ω = 0 (16)

∂ω

∂t
+ U

∂ω

∂X
+ V

∂ω

∂Y
= Pr∇2ω +RaPr

∂θf
∂X

−Ha2 P r
∂V

∂X
(17)

∂θf
∂t

+ U
∂θf
∂X

+ V
∂θf
∂Y

=
(
∂2θf
∂X2

+
∂2θf
∂Y 2

)
(18)

– Solid part

∂θw
∂t

= α∗
(
∂2θw
∂X2

+
∂2θw
∂Y 2

)
(19)

with U = ∂ψ
∂Y , V = − ∂ψ

∂X and ω = ∂V
∂X − ∂U

∂Y .

The boundary conditions are:

ψ (0, Y ) = ψ (L/H, Y ) = ψ (X, 0) = ψ (X, 1) = 0

(20a)

θw (0, Y ) = 1; θf (L/H, Y ) = 0;
∂θw (X, 0)

∂Y
= 0;

∂θf (X, 0)
∂Y

= 0;
∂θw (X, 1)

∂Y
= 0;

∂θf (X, 1)
∂Y

= 0

(20b)

θf (D,Y ) = θw (D,Y ) ;
∂θf(D,Y )

∂X

∣∣∣∣
fluide

= Kr
∂θw (D,Y )

∂X

∣∣∣∣
solide

(20c)

The local and average Nusselt numbers are defined by:

Nu =
(
− ∂θ

∂X

)
X=D,L/H

; Nu =

1∫
0

NudY (21)

A uniform mesh (100, 82) is used in X and Y directions.
Numerical solution of the governing equations is obtained
using the ADI method [7] and SOR method [8]. The itera-
tion process is terminated under the following conditions:

∑
i,j

∣∣ψni,j − ψn−1
i,j

∣∣ /∑
i,j

∣∣ψni,j ∣∣ � 10−5 (22)

For wall side Nu|X=0 = Nu |X=D (23)

For fluid side Nu|X=D = Nu
∣∣
X=L/H (24)

where D is the dimensionless wall thickness (D = d/H).
A good agreement between our results and the previ-

ous studies [1, 4] is obtained (see Tabs. 1 and 2).

3 Results and discussions

3.1 Effect of Rayleigh number and wall conductivity
(Ha = 0)

In the absence of a magnetic field (Ha = 0), Table 3
shows the effect of both Rayleigh number and thermal
conductivity ratio on fluid motion and thermal field in the
enclosure for poorly conducting wall (Kr = 0.1), equal
wall/fluid conductivity (Kr = 1) and high conducting
wall (Kr = 10). We observe in Table 3 that the max-
imum values of dimensionless stream function ψmax in
the fluid part are increasing with the increase of both
Rayleigh number and conductivity ratio. As a result nat-
ural convection is strengthed because of the increase of
the effective temperature difference driving the flow.

The rate of heat transfer across the cavity is obtained
by evaluating the average Nusselt number at the active
side walls. It is clear from Figure 2a that the average
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Table 1. Comparison of Nu with Kaminski solution [1], D =
0.2.

Ra Kr Reference [1] Present study
grid (40 × 30) grid (100 × 82)

1 0.87 0.867
7 × 102 5 1.02 1.017

10 1.04 1.040
∞ 1.06 1.063
1 2.08 2.084

7 × 104 5 3.42 3.417
10 3.72 3.719
∞ 4.08 4.076

Table 2. Comparison of Nu with Rudraiah [4] solutions.

Ha Reference [4] Present work
0 2.518 2.534
10 2.223 2.241
50 1.085 1.076
100 1.011 1.006

Table 3. ψmax for various Ra and Kr.D = 0.2, Ha = 0.

Ra = 104 Ra = 105 Ra = 106

ψmax ψmax ψmax

Kr = 0.1 2.140 4.601 6.190
Kr = 1 3.495 6.041 8.241
Kr = 10 3.948 6.712 9.896

Nusselt number is more important for high conductive
wall. It is increasing with the increase of Rayleigh number
for a given Kr. This means that convection heat transfer
becomes more important for both high Ra and Kr. For
poor conductive wall (Kr = 0.1) where the solid part is
an insulation material, the average Nusselt number is al-
most constant and having low values compared with those
(Kr = 1 and 10). This is a logical result since reducing
the thermal conducting of the wall leads to the increase
in thermal resistance of the overall system and therefore
reducing Nu. This indicates that most of heat transfer
is dominated by conduction mode. In addition for high
conduction wall (Kr = 10) where the solid part is a good
conductive wall convection heat transfer is strengthed and
the solid layer tends to become an isothermal wall.

Figures 2b and 2c show for D = 0.2 and Ra = 106 the
effect of thermal conductivity ratio on wall/fluid interface
temperature and temperature profile at Y = 0.5. A com-
parison is made with the standard enclosure (D = 0.2,
Kr = ∞). The temperature difference between the inter-
face and the cold boundary (θ = 0) is small for walls with
poor thermal conductivity. It becomes more important
with the increase of Kr, and leads to increase the average
Nusselt number. For high values of Kr the interface tem-
perature distribution tends to become uniform which is
the standard enclosure (Kr = ∞). The temperature pro-
file across the wall/ fluid interface is quite non uniform.
This non uniformity has a noticeable effect on the flow
field and the flow structure is asymmetric.

1000 10000 100000 1000000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Nu

Ra

Kr=0.1
Kr=1
Kr=10
Kr=

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Kr=

Kr=0.1

Kr=1

Kr=10

wf

Y
(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

X

Ra=106

Kr=0.1
Kr=1
Kr=10
Kr=

(c)

Fig. 2. (a) Variation of Nu with Rayleigh number Ra.
(b) Variation of wall/fluid interface temperature D = 0.2,
Ra = 106. (c) Temperature profile at Y = 0.5.
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Table 4. ψmax and Vmax for various Ha and Kr.D = 0.2.

Ha = 50 Ha = 100 Ha = 150
ψmax Vmax ψmax Vmax ψmax Vmax

Kr = 0.1 3.80 25.00 2.29 15.08 1.45 12.37
Kr = 1 6.07 55.28 4.43 34.16 3.01 21.72
Kr = 10 7.41 74.37 5.66 46.21 3.82 26.75

3.2 Effect of magnetic field (Ha �= 0)

When the fluid is electrically conducting and exposed
to a magnetic field the Lorentz force is also active and
interacts with buoyancy force in governing the flow and
temperature fields. The magnetic field strength and its in-
clination angle are the most important factors that affect
the flow velocity and the rate of heat transfer.

Table 4 demonstrates the influence of the magnetic
field parameter Ha on fluid motion for Ra = 106. |ψ|max
and |V |max are reducing by the increase of the magnetic
field strength. The flow velocity interacts with the mag-
netic field and convection heat transfer is considerably
reduced. Convection in case (Kr = 0.1) is weaker than
the other cases, so the influence of the magnetic field in
this case is less important. For high value of Hartmann
number we observe that |ψ|max and |V |max are very small
comparing with low value of Ha. This is due to the sup-
pression of convection mechanism by the magnetic field.

The effect of Hartmann number on convection for
Ra = 106, can be observed also from thermal field shown
in (Fig. 3). In the absence of a magnetic field (Ha = 0),
the fluid rises along the hot wall/fluid surface and falls
along the right cold wall, so thermal gradient is very
important in these regions. For high Kr (Ra = 106,
Kr = 10), we observe in (Fig. 3c) a temperature strati-
fication in the vertical direction and the thermal bound-
ary layer is well established along the side walls, as a
consequence the development of convection mode of heat
transfer.

As the Hartmann number increases the stratification
of the thermal field (Kr = 1 and 10) in the interior di-
minishes and the thermal boundary layers at the two side
walls disappear. As shown in (Fig. 3), for poor conduc-
tive wall the average Nusselt number is almost constant
indicating that the effect of the magnetic field can be ne-
glected since the velocity flow is less important. While
for the other cases (Kr = 1 and Kr = 10) we observe
that the rate of heat transfer is decreasing when the mag-
netic field strength increases and convection is progres-
sively suppressed. In consequence the introduction of a
magnetic field is to decrease the overall heat transfer rate
between the active walls.

4 Conclusion

A numerical study of conjugate natural convection
with the presence of a magnetic field was employed to an-
alyze the flow and heat transfer of an electrically conduct-
ing fluid (liquid gallium) filled in a square enclosure with
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Fig. 3. Steady state of isotherms for different values of
Hartmann number.

thick and conductive left vertical wall. The following con-
clusions were summarized. In the absence of a magnetic
field, natural convection is strengthed by the increase of
both Rayleigh number and conductivity ratio because of
the increase of the effective temperature difference driv-
ing the flow. The interface temperature is found to be
quite non- uniform especially for high Ra and Kr. This
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non uniformity tends to make the flow pattern in the en-
closure asymmetric. The presence of a magnetic field is
to control fluid flow and heat transfer. It makes a strong
effect on natural convection in the fluid part especially
for high conducting wall. The Lorentz force produced by
the magnetic field interacts with buoyancy force govern-
ing the flow and suppresses the convection currents by
reducing the flow velocity and the rate of heat transfer.
Furthermore for poor conducting wall (Kr = 0.1) where
the convection is dominated by heat conduction for both
wall and fluid layer, results show that the presence of a
magnetic field is not important and its effect in this case
can be neglected.
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