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Abstract – This paper presents a simple analytical model of the dynamic response of a structure subjected
to a low speed impact, in order to predict global damage. The model is based on thick plate theory developed
by Reddy and takes into account the through thickness shear. An indentation law based on the theory of
Hertz is determined experimentally to model the local response. A numerical integration method is used
to calculate the contact force versus time, by combining the indentation with the dynamic response of
the structure. The validation has been performed by comparing results with measurements obtained on a
falling weight set-up, and a satisfactory correlation is obtained. This model leads to the identification of
parameters inducing damage. The modal damping coefficient is taken into account.
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1 Introduction

The impact is one of the main and most damaging
causes of laminated materials (monolithic or sandwiches).
The damage created by an impact can significantly reduce
stiffness of a multilayered structure, especially in com-
pression mode and bending. It has been observed that
when composite plates are subjected to impact loading,
two types of damage need to be considered: local damage
involving crushing beneath the impactor, and global dam-
age revealed by cracks due to flexure of the plate. Various
experimental studies, performed on a wide range of mate-
rials, have described these different types of damage [1,2].
For composite materials laminated panel type or sand-
wich, internal induced damage may become severe and
weaken the structure. The effect of the low-speed impact
is therefore a threat to the safety of composite structures.

In order to study these different types of damage,
which depend on both the lay-up and material properties
of the constituents and the boundary conditions, finite
element (FE) methods, can be applied [3–6].

However, the dynamic response model of a thick com-
posite plate subjected to impact loading can also be stud-
ied using analytical expressions [7], which can enable
rapid parametric studies to be performed without the nu-
merical difficulties and complexity of FE models. In this
paper an analytical approach has been developed which

a Corresponding author: abdulwahabmo1@gmail.com

accounts for the structural aspects of the panel and its
behavior during localized loading under the impactor.

The behaviour of laminated composite plates subse-
quent to impact is a subject which, today, attracts the
interest of many researchers. There are numerous pub-
lished articles on the subject; however, numerical simula-
tions using the finite element method remain a favourite
approach to the problem which can often involve com-
plex models. A simple dynamical method has been used
in this work, based on modal superposition. This study
aims at analysing the global displacement modes arising
from overloads occurring at locations away from the im-
pacted zones. This should facilitate the preliminary de-
sign of composite plates without having to utilize costly
numerical methods.

The dynamical response is obtained by modal super-
position, the modes being calculated analytically assum-
ing a simple mathematical model of the thick plate vibrat-
ing under simple boundary conditions. The plate model
is based on the work of Reddy [8] and includes transverse
shear effects. The displacement field can then be calcu-
lated at any point of the plate.

In order to calculate the contact force due to im-
pact, it is necessary to formulate an indentation law to
model the localized effects of the shock. In this paper, a
law of the Hertzian type has been adopted and verified
experimentally.
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List of symbols

a, b dimensions of the plate

Aij membrane rigidity

Bij coupling rigidity (membrane-bending)

Dij shear-bending stiffness

Ei, E Young modulus

F (t) contact force

Fi value of the force during an interval of time

g acceleration of gravity

Gij , G shear modulus

Iz, I moment of inertia

kz Hertzian coefficient

L Lagrange

Mnm generalized mass of mode n, m

mo mass of the impactor

p transversal load

R radius of the impactor

s(t) displacement of the impactor

T contact time

Ud energy of deformation

u, v displacements of the mid plane

Vd potential energy of the structure

V0 velocity of the impactor before impact

w transverse displacement of the structure

α penetration

ξnm generalized damping coefficient of the mode n, m

ϕx, ϕy rotations of the normal

σij stresses

εij strains

νij Poisson’s ratio

ρ density

h thickness

A numerical scheme makes it possible to integrate,
with respect to time, the two mechanical phenomena, the
local deformation and the response of the structure.

To validate the model, low energy impact tests were
performed by dropping a rigid sphere of mass 10.9 kg onto
composite sandwich panels at various impacting veloci-
ties. Laminates, formed of orthotropic symmetrical lay-
ers, are composite materials with long fibers and an or-
ganic matrix. A parametric study was then performed to
study the influence of the dimensions of the plate and
the mechanical properties of the material on the dynamic
response.

2 Theory of thick laminated plates

To study the vibrational motion of a thick composite
structure, the elements of the theory of thick laminated
plates needed to study the dynamic behavior are briefly
presented.

The fundamental assumptions of the theory of thick
plates are [9]:

– the plates are composed of a stack of parallel layers;

 z

b 

  

  0

 

h 
 

  

Fig. 1. Schematic of a thick monolithic plate.

– the thickness h is greater than 1/25th of the smaller
side a (see Fig. 1);

– the elastic behavior for each layer is linear;
– the shear stress is significant;
– the displacements and deformations are small.

The stresses σij must satisfy the following conditions on
the upper and lower sides of the plate:

σxz

(
x, y,±h

2
, t

)
= σyz

(
x, y,±h

2
, t

)
= 0 (1)

σzz

(
x, y,

h

2
, t

)
= p+(x, y, t)

σzz

(
x, y,−h

2
, t

)
= p−(x, y, t) (2)

where p±(x, y, t) is the transverse load applied on the up-
per and lower faces of the structure.

In the case of a monolithic thick plate, according to
Reddy [8], the displacement field has the following kine-
matics:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t) + z2θx(x, y, t)
+ z3ψx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) + z2θy(x, y, t)
+ z3ψy(x, y, t)

w(x, y, z, t) = w(x, y, t)
(3)

where u0, v0 and w are, respectively, the displacements
in the median plane and the transverse displacement of
the structure, z is the vertical coordinate.

ϕx and ϕy are the components of the normal to the
median plane along the axes x and y respectively. The
functions θx, θy, ψx, and ψy can be determined by using
conditions on the transverse shear stresses.

It is important at this point to recall that, according
to Equation (1), the conditions on the constraints that
need to be checked on the upper and lower sides of the
plate, imply, thanks to the linear relationship between
stress and strain, that the functions listed above have the
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following form:

θx = 0, θy = 0, ψx = − 4
3h2

(
∂w

∂x
+ φx

)

and ψy = − 4
3h2

(
∂w

∂y
+ φy

)
(4)

Substituting Equation (4) in the Equation (3), we obtain
the form used for the displacement field:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x, y, z, t) = u0(x, y, t)+zφx(x, y, t)− 4z3

3h2

(
∂w

∂x
+φx

)

v(x, y, z, t) = v0(x, y, t)+zφy(x, y, t)− 4z3

3h2

(
∂w

∂y
+φy

)
w(x, y, z, t) = w(x, y, t)

(5)

2.1 Strain field

The strain field is deduced from the displacement field
in Equation (5), thus we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx = u0
,x + zϕx,x − 4z3

3h2

(
∂2w

∂x2
+ ϕx,x

)

εyy = v0
,y + zϕy,y − 4z3

3h2

(
∂2w

∂y2
+ ϕy,y

)

2εxz =
(
ϕx +

∂w

∂x

) (
1 − 4z2

h2

)

2εyz =
(
ϕy +

∂w

∂y

) (
1 − 4z2

h2

)
2εxy = u0

,y + v0
,x + z (ϕx,y + ϕy,x)

− 4z3

3h2

(
2
∂2w

∂x∂y
+ ϕx,y + ϕy,x

)

(6)

2.2 Stress field

The behavior law for thick plates is expressed using
the following equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx

σyy

σyz

σxz

σxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 Q16

Q12 Q22 0 0 Q26

0 0 Q44 Q45 0
0 0 Q54 Q55 0
Q16 Q26 0 0 Q66

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx

εyy

εyz

εxz

εxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ σzz

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1

R2

0
0
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)
where the coefficients of stiffness of a thick laminate com-
posed of n layers of the same properties are expressed as
follows:

Ri =
Ci3

C33
for i = 1, 2

where Cij are the stiffness coefficients of the material.

Qij = Cij − Ci3C3j

C33
if i, j = 1, 2, 6

and Qij = Cij if i, j = 4, 5

These coefficients can be expressed if the layers have the
direction of the principal axis:

Q11 =
E1

Ω
Q22 =

E2

Ω
Q12 =

ν12E2

Ω
Ω = 1 − ν12ν21

Q44 = G23 Q55 = G13 Q66 = G12

R1 =
E1

E3

(ν31 + ν12ν32)
Ω

R2 =
E2

E3

(ν32 + ν12ν31)
Ω

2.3 Fundamental relations of the behavior
of a laminate taking into account the transverse
shear

In the case of a thick plate, the fundamental equation
of dynamic can be written as follows divσ = ρÜ . Thus we
obtain a new system of equations⎧⎪⎨

⎪⎩
Mx,x +Mxy,y −Qx = fu

Mxy,x +My,y −Qy = fv

Qx,x +Qy,y − Pw = fw

(8)

where pW = [σzz ]
h/2
−h/2

(Mx, My, Mxy) =

h/2∫
−h/2

z(σxx, σyy, σxy) dz (9)

(Qx, Qy) =

h/2∫
−h/2

(σxz, σyz ) dz

and(
(fu, fv) =

∫ h/2

−h/2

ρz (ü, v̈) dz

)
,

⎛
⎜⎝fw =

h/2∫
−h/2

ρẅ dz

⎞
⎟⎠

3 Analytical method

From the theory of thick plates, we can establish an
analytical method for the study of the dynamic response
of a thick monolithic plate subjected to a low impact
speed.

3.1 Principle of the method

The principle of the method is to develop an analytical
solution based on models compatible with the studied me-
chanical phenomena, ensuring the boundary conditions of
shear stress on the upper and lower faces.

It is therefore necessary to:
– build a cinematically admissible displacement field

satisfying the boundary conditions;
– establish a system of partial differential equations de-

rived from the integration of local equilibrium equa-
tions through the thickness to obtain (u, v, w );

– make an energy balance from the formulations based
on the displacement field.
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Applied load 

z 

x 
Thick plate 

Fig. 2. Composite plate subjected to a transverse load.

3.2 Dynamic response

We consider the case of a rectangular orthotropic thick
plate simply supported and subjected to a transverse load
applied to its mean plane.

The following boundary conditions on the lateral faces
of the plate are considered [10]:

For

⎧⎨
⎩
x = −a

2
x =

a

2

⎧⎨
⎩
w = 0
ϕy = 0
Mx = 0

(10)

For

⎧⎪⎨
⎪⎩
y = − b

2
y =

b

2

⎧⎨
⎩
w = 0
ϕx = 0
My = 0

(11)

An elementary load applied to the upper face h
2 is con-

sidered following the boundary conditions given in Equa-
tions (1) and (2)

σxz

(
x, y,±h

2
, t

)
= σyz

(
x, y,±h

2
, t

)
= 0

σzz

(
x, y,

h

2
, t

)
= p+(x, y, t)

σzz

(
x, y,−h

2
, t

)
= 0

(12)

3.3 Calculation of the transverse displacement
of the plate

The dynamic response, of an orthotropic symmetri-
cal rectangular plate subject to a concentrated transverse
load at a point (x0, y0), is determined from a modal
decomposition. Vertical displacements and external me-
chanical stresses are expressed in the form of double
Fourier series under the assumption of a common base
space[

w (x, y, t )

p (x, y, t)

]
=

∞∑
1

∞∑
1

[
qnm(t) g3

nm (x, y)

pnm(t) g3
nm (x, y)

]
(13)

Normal rotations can be expressed in function of two
other bases

ϕβ(x, y, t) =
∞∑

n=1

∞∑
m=1

aβ
nm (t) gβ

nm(x, y) (14)

The gi
nm(x, y), i = 1, 2, 3 are known functions which

satisfy the boundary conditions.

The modal decomposition of the external force is used
to identify the coefficients pnm(t). It remains to be iden-
tified a1

nm(t), a2
nm(t) and qnm(t). These parameters can

be calculated from the equilibrium Equations (8). To do
this, we use the Lagrange equation of equilibrium

L = EC − Vd and
d
dt

∂L

∂q̇nm
− ∂L

∂qnm
= 0 (15)

where Vd and Ec are respectively the potential and the
kinetic energies. Vd and Ec are given by the following
expressions

• EC = 1
2

∫
A ρS

(
∂w
∂t

)
2dxdy =

∑
n

∑
mMnmq̇

2
nm

where Mnm is the generalized modal mass with

Mnm = ρS

a∫
0

b∫
0

(g3
nm)2 dxdy

• Vd = Ud − Ti

where Ud = 1
2

∫
V

σT ε dV is the energy of deformation and

Ti =
∫
A

p(x, y, t)w(x, y, t) dxdy is the work of the force

of impact.
We solve the problem of a concentrated load

p(x, y, t) = F (t) δ(x− x0) δ(y − y0)

Lagrange’s theorem leads to a differential equation of sec-
ond order

q̈nm + 2ξnmωnmq̇nm =
g3

nm (x0, y0)F (t)
Mnm

(16)

whose solution is

qnm(t) =
g3

nm(x0, y0)
�nmMnm

t∫
0

e(−ξnm ωnm(t−τ))

× F (τ) sin (�nm(t− τ)) dτ (17)

�nm is the damped pulse with �nm = ωnm

√
1 − ξ2nm.

ξnm is critical damping coefficient, which takes into
account both the elasticity of the material and the non-
linearity of the supports.

Accordingly, by referring the expression (17) in Equa-
tion (13), the response of the plate by modal superposi-
tion is reconstructed. The transverse displacement of the
plate is given by

w(x, y, t) =
∞∑

n=1

∞∑
m=1

g3
nm(x0, y0)
�nmMnm

×
t∫

0

e(−ξnm ωnm(t−τ)) F (τ) sin (�nm(t− τ)) dτ (18)

where the natural frequencies can be determined experi-
mentally or calculated from the fundamental equations of
the thick monolithic plate.
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For the determination of natural frequencies, the fol-
lowing characteristic polynomial is used:

det[Knm − ω2
nmMnm] = 0 (19)

where the elements of the matrices are given in the Ap-
pendix.

3.4 Application

In the case of a thick monolithic plate simply sup-
ported, the vertical displacement and rotations are ex-
pressed by Equations (10) and (11):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(x, y, t) =
∞∑

n=1

∞∑
m=1

qnm(t) sin
(
nπ x

a

)
sin
(
mπ y

b

)
ϕx(x, y, t) =

∞∑
n=1

∞∑
m=1

a1
nm(t) cos

(
nπ x

a

)
sin
(
mπ y

b

)
ϕy(x, y, t) =

∞∑
n=1

∞∑
m=1

a2
nm(t) sin

(
nπ x

a

)
cos
(
mπ y

b

)
(20)

where the parameters a1
nm(t) and a2

nm(t) are given by

⎧⎪⎪⎨
⎪⎪⎩
a1

nm(t) =
k12k23 − k13k22

k11k22 − k2
12

qmn(t)

a2
nm(t) =

k12k13 − k23k11

k11k22 − k2
12

qmn(t)
(21)

where the terms kij are developed in the Appendix.
Substituting Equation (21) in Equation (20), the

transverse displacement and rotations can be written

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w(x, y, t) =
4

abρS

×
∞∑

n=1

∞∑
m=1

sin
(
nπ

x

a

)
sin
(
mπ

y

b

)

×
sin
(
nπ

x0

a

)
sin
(
mπ

y0
b

)
�nm

×
t∫
0

e(−ξnmωnm(t−τ))F (τ) sin (�nm(t− τ)) dτ

ϕx(x, y, t) =
∞∑

n=1

∞∑
m=1

a1
nm(t) sin

(
nπ

x

a

)
cos
(
mπ

y

b

)

ϕy(x, y, t) =
∞∑

n=1

∞∑
m=1

a2
nm(t) cos

(
nπ

x

a

)
sin
(
mπ

y

b

)
(22)

The natural frequencies are equal to

ω2
nm =

1
ρS

×
[
k33 +

k13(k12k23 − k13k22)
k11k22 − k2

12

+
k23(k12k13 − k11k23)

k11k22 − k2
12

]
(23)

Fig. 3. Example of configuration of a falling weight.

3.5 Localized loading

To simulate shock experiments on falling weight ma-
chine, the excitement is assumed to be vertical and lo-
cated in the center of the plate (x0, y0). The applied load
is developed using a double Fourier series

p(x, y, t) =
∞∑

n=1

∞∑
m=1

pmn(t) sin
(
nπ

x

a

)
sin
(
mπ

y

b

)
(24)

where

pnm =
4
ab

a∫
0

b∫
0

pmn(t) sin
(
nπ

x

a

)
sin
(
mπ

y

b

)

By substituting pmn by its value in Equation (24),
p(x, y, t) (for the case of a localized loading) can be ex-
pressed as

p(x, y, t) =
∞∑

n=1

∞∑
m=1

4F (t)
ab

sin
(
nπ

x0

a

)

× sin
(
mπ

y0
b

)
sin
(
nπ

x

a

)
sin
(
mπ

y

b

)
(25)

4 Contact force

Consider two bodies that will collide, one is elastic and
the other rigid. As part of the study of the impact behav-
ior of a thick monolithic plate, the contact is modeled by
the Hertz law [Lee 93]

This contact law (sphere on plane), is of the type

F = kh(α)3/2 (26)

where F is the contact force during impact and kh is the
hertzian coefficient which depends on the elastic proper-
ties of two bodies. This coefficient can be experimentally
determined by a quasi-static loading test. The penetra-
tion α is given by

α(t) = s(t) − w(x0, y0, t) (27)

where s(t) represents the displacement of the impactor,
and w(x0, y0, t) the transverse displacement of the struc-
ture at the point of impact.
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plate and those of the impactor)

Calculation of modal frequencies 

 

Calculation of the contact force using 
a numerical scheme for time integration 

 

If F>0 
  

no 

Force, displacement and contact time 

yes                

Input data (geometric characteristics of the 

Fig. 4. Shock algorithm using an iterative method.

The transverse displacement of the impactor is given
by

s(t) = V0t− 1
m0

t∫
0

F (τ)(τ − t)dτ (28)

where V0 is the velocity of the impactor before impact
and m0 the mass of the impactor.

By referring Equations (18) and (28) in Equation (27),
a new expression appears:(

F
kh

)2/3

= V0t− 1
m0

t∫
0

F (τ)(τ − t)dτ

−
∞∑

n=1

∞∑
m=1

g3
nm(x0, y0)
�nmMnm

×
t∫
0

e(−ξnmωnm(t−τ))F (τ) sin (�nm(t− τ)) dτ

(29)

This nonlinear integral equation obtained can be solved
by a numerical method. Reference may be made to the
work of Sun and Chattopadhyay [13] using an explicit
method with increments of time. Calculating the contact
force provides transverse movement of the plate by appli-
cation of Equation (29). The used algorithm is shown in
Figure 4.

We were led to develop numerical simulation of the
dynamic response, taking into account the damping in
the model. This comes from the viscoelasticity of the ma-
terial or the loss of energy at the supports (poor quality
of the installation, matting at the supports, etc.). In the
procedure of calculation of the contact force (see Fig. 4),
we use the following algorithm.

The first time step F1 is calculated from V0.

F1 = kh(V0δτ)3/2

At time i, Fi is calculated from V(i−1) and F(i−1):

(Fi/kh)2/3 = V(i−1)δτ − 1
m0

i−1∑
j=0

Fjδτ
2 (2i− 2j − 1

2

−
∑

n

∑
m

4(g3
nm(x0, y0))2

(abρh�2
nm)

i−1∑
j=0

(f1(j, i) − f2(j, i))

Table 1. Characteristics of the plates.

Properties Average value Obtained by

Density 1600 kg/m3 Weighing

Young’s modulus

E1 = E2 = 14 GPa Static test

E3 = 8 GPa Ultrasonic
measurement

Shear modulus G12 = G13 = 4 GPa Static test

Poisson’s ratio ν12 = ν32 = 0.25 Static test

Thickness 14.5 mm Average of

30 measurements

Length of the plate: a = 0.3 m, width of the plate: b = 0.3 m.

where

f1(j, i) = e(−ωnmξnm(i−j−1))δτ Fj [cos(�nm(i− j − 1) δτ

+ ξnm sin((�nm(i− j − 1) δτ ]

f2(j, i) = e(−ωnmξnm(i−j))δτ Fj [cos(�nm(i− j) δτ

+ ξnm sin((�nm(i− j) δτ ]

The iterations are continued until an N such that F = 0.
So Ndτ is the contact time.

5 Results

5.1 Dynamic analysis of a thick monolithic plate

We propose to examine in detail the dynamic behavior
of a rectangular monolithic plate (300× 300× 15 mm) of
composite material simply supported on four sides, with
12 identical glass fiber plies (a ply is formed by a layer
of tissue 0/90 of 500 g/m2 and a layer of 300 g/m2) in a
polyester resin. This plate is subjected to the impact of
a rigid sphere falling from a variable height ranging from
0.25 m to 2 m. The geometrical characteristics of the plate
and the material properties are given in Table 1.

The steel impactor properties are: mass m0 = 10.9 kg,
radius: R = 50 mm. The coefficient of penetration is
obtained by a quasi-static loading test: kh = 2.2 ×
108 N/m1.5.

Figures 5 and 6 show that the results obtained with
the approach developed here are similar to those obtained
by the experiment (10% difference of the force and dis-
placement). Better correlation could be obtained by vary-
ing parameters such as stiffness crushing from these trials.

The comparative study of Tables 2 and 3 shows that
the calculation results are close to the measured values.
For displacement, the error is of the order of 5%.

6 Conclusion

The purpose of this work was to develop a simple an-
alytical model for the simulation of the dynamic response
of a structure subjected to a low-speed impact, to predict
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Fig. 5. Comparison between theoretical and experimental re-
sults of the force of contact.

Fig. 6. Displacement of the thick plate with time obtained by
experiment and by the analytical method by modal superpo-
sition with 4 modes taken into account in the calculation for
a damping ξnm = 10%.

Table 2. Contact force (×104(N)) at the center of the thick
plate for 10.9 kg.

Height (m) 1 1.5 1.75

Prediction/measuring 1.7/1.8 2.15/1.95 2.33/2.50

relative error –5.8% 9.3% –7.2%

the initiation of a global damage. This model was devel-
oped from the theory of anisotropic elastic thick plates
based on an approach which takes into account the trans-
verse shear.

The dynamic modal acceleration approach allows very
significantly reduction of the number of modes to be con-
sidered by first integrating the static solution.

The developed method was validated by a double com-
parison, experiments with falling weight machines and
with a semi-analytical energy model. The results are in
good agreement with regard to the vertical displacement,
the contact force and the duration of contact. These com-
parisons have highlighted the importance of damping due
to boundary conditions at supports.

The result of our work can be used to predict the
transverse shear deformation in the core of a sandwich
plate to apply a failure criterion that will predict the oc-
currence of damage due to impact.

Table 3. Displacement (mm) at the center of the thick plate
for 10.9 kg.

Height (m) 1 1.5 1.75

Prediction/measuring 9.5/9.9 12.5/11.5 13/11.8

relative error –4.2% 8% 9.2%

Appendix

The elements of the stiffness matrix (9, 12) are defined,
as following:

k11 = D11α
2
1 +D66β

2
1 +A55 − 4

h2
D55

− 4
h2

(
F11α

2
1 + F66β

2
1

)− (D55 − 4
3h2

F55

)
α2

1

k12 =
(
D12α

2
1 +D66β

2
1 +A55 − 4

3h2
(F11 − F66)

− 4
3h2

(F11 − F66) −
(
D55 − 4

3h2
F 55

))
α1β1

k13 =
(
A55 − 4

h2
D55

)
α1

− 4
3h2

[F11α
3
1 − (F11 + 2F66) − F66)α1β

2
1 ]

k22 = D22β
2
1 +D66α

2
1 +A55 − 4

h2
D44

− 4
h2

(
F22β

2
1 + F66α

2
1

)− (D44 − 4
3h2

F 44

)
β2

1

k23 =
(
A44 − 4

h2
D44

)
β1 − 4

3h2

× [F22β
3
1 − (F12 + 2F66) − F66)β1α

2
1

]
−
(
D44 − 4

3h2
D44

)
β3

1 −
(
D55 − 4

3h2
F 55

)
α1β

2
1

k33 =
(
A55 − 4

h2
D55

)
α2

1 −
(
A44 − 4

h2
D44

)
β2

1

With α1 = nπ
a and β1 = mπ

a

Aij , Dij =

h/2∫
−h/2

Qij(1, z2) dz for i, j = 1 to 6

Fij =

h/2∫
−h/2

Qij(z4)dz for i, j = 1 , 2 , 6

D44, F 44 =

h/2∫
−h/2

Q44R1(z2, z4) dz

D55, F 55 =

h/2∫
−h/2

Q55R2(z2, z4) dz
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