Study of the development of plastic instabilities during tests on metallic plates biaxially loaded in their plane, in tension or in compression

DOMINIQUE JOUVE

CEA, DAM, DIF, 91297 Arpajon, France

Received 15 June 2015, Accepted 18 November 2015

Abstract – Plastic instabilities develop during tension and compression tests on metallic plates biaxially loaded in their plane. They limit the acceptable deformation levels during sheet forming. Carrying out a Linear Stability Analysis, we study the onset of their development. We calculate the growth rate of small symmetrical and antisymmetrical defects with respect to the median plane of the plate, periodic along the loading directions, and we determine the dominant mode. This 3D model applies to dynamic tests whatever the thickness. It retrieves classical results for thin plates statically loaded in tension. Plane tension and compression tests are two particular 2D cases of this model. In plane strain tension on ductile non viscous materials, we retrieve that the first instabilities, which are also long wavelength necking ones, arise very little time before the applied force is maximum; this is consistent with the experimental observations of Considère. As time goes by, antisymmetric modes with shorter wavelengths compete with the symmetric ones.

Key words: Plastic instabilities / linear stability analysis / tension and compression tests / biaxial loading / symmetric and antisymmetric defects

1 Introduction

Plastic instabilities develop during tension and compression tests on metallic plates biaxially loaded in their plane. They limit the acceptable deformation levels during sheet forming. Many publications have dealt with the onset and the development of necking in tension, since the pioneering works of Considère (1885) [1]. Many of them deal with thin plates statically loaded [2–9].

In order to study the onset of the development of these instabilities, we carry out a Linear Stability Analysis [7,8,10–15]. We consider a plate dynamically loaded with constant velocities applied at its edges (our model applies whatever the thickness) (see Fig. 1), and we calculate the growth-rate θ of small perturbations δx of the material trajectories of the mean homogeneous flow of the perfect plate (cf. [15], Chap. 7)¹, that are representative of the instabilities. We suppose that they grow exponentially

\[\delta \vec{x} = \epsilon^{\theta t} \times \vec{F} \quad \text{(space variables)} \]

(δx = e^{θt} × F) (space variables). They are supposed to be periodic along the x1- and x2-loading directions of the velocity of each material particle that remains constant with time. The velocity gradients along these directions are uniform at each time (but they evolve with time).

¹ For an incompressible material, the projection on the x1- and x2-loading directions of the velocity of each material particle remains constant with time.
Nomenclature

<table>
<thead>
<tr>
<th>Latin symbols</th>
<th>Greek symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_c)</td>
<td>(\alpha = D_{22}/D_{11})</td>
</tr>
<tr>
<td>(D_{ij})</td>
<td>(\gamma = 2\pi/\lambda_0)</td>
</tr>
<tr>
<td>(D^p_{ij})</td>
<td>(\gamma = \sqrt{\gamma_1^2 + \gamma_2^2})</td>
</tr>
<tr>
<td>(G)</td>
<td>(\delta x_i)</td>
</tr>
<tr>
<td>(L_1)</td>
<td>(\varepsilon_p)</td>
</tr>
<tr>
<td>(L_0)</td>
<td>(\dot{\varepsilon}_p)</td>
</tr>
<tr>
<td>(t)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(T)</td>
<td>(\lambda_0)</td>
</tr>
<tr>
<td>(V_{0n})</td>
<td>(\rho)</td>
</tr>
<tr>
<td>(x_{0i})</td>
<td>(\Sigma_{ij})</td>
</tr>
<tr>
<td>(S_{ij})</td>
<td>(\delta)</td>
</tr>
<tr>
<td>(Y)</td>
<td>(\psi = \arctan(\gamma_2/\gamma_1))</td>
</tr>
</tbody>
</table>

1. subscript \(i = 1, 2, 3 \)
2. subscript \(\alpha = 1, 2 \)
3. In the manuscript, superscript \((d) \) refers to the dominant mode. For instance, \(\lambda_1^{(d)} \) denotes the wavelength associated with the dominant mode in \(x_1 \)-direction.
4. \(A \) denotes Lagrangian derivative of \(A \), for any quantity \(A \).

We have developed a 3D Linear Stability Analysis; it applies to dynamic tests, whatever the thickness of the plate. In tension, when inertial effects are negligible, and for sufficient viscous effects, the wavelength of the most unstable defects is large compared to thickness, and we retrieve the growth-rate of necking plastic instabilities calculated by Dudzinski and Molinari in their Compte Rendu à l’Académie des Sciences in 1988 [7, 8, 16, 17], in the framework of generalized plane stress theory [18, 19].

In this paper, first in Section 2 we search for the dominant mode for different loadings; then we deal with plane tension and compression tests in Section 3 (the dimension of the plate is infinite along one loading direction).

2 Main results of our 3D model

2.1 Searching for plastic strain localization lines

We suppose that the perturbation \(\delta \vec{x} \) of material trajectories is periodic along the \(x_1 \) - and \(x_2 \) -loading directions, and that the end faces normal to the loading directions remain plane over time. Thus we have (cf. [15],

\[D \text{ Jouve: Mechanics \\ & Industry 17, 511 (2016)} \]
Symmetric defects

cross-section in a plane $x_1=$constant
cross-section in a plane $x_2=$constant

Antisymmetric defects

cross-section in a plane $x_1=$constant
cross-section in a plane $x_2=$constant

Fig. 2. Symmetric and antisymmetric defects with respect to the median plane of the plate, periodic along the x_1- and x_2-loading directions.

Chap. 18), in Lagrangian coordinates x_0_i ($i = 1, 2, 3$):

\[
\begin{align*}
\delta x_1 &= e^{\theta t} \sin(\gamma_1 x_{01}) \cos(\gamma_2 x_{02}) F_1(x_{03}) \\
\delta x_2 &= e^{\theta t} \cos(\gamma_1 x_{01}) \sin(\gamma_2 x_{02}) F_2(x_{03}) \\
\delta x_3 &= e^{\theta t} \cos(\gamma_1 x_{01}) \cos(\gamma_2 x_{02}) F_3(x_{03})
\end{align*}
\]

(1)

with, setting $L_{0i} = L_i(t_0 = 0)$ ($i = 1, 2, 3$):

\[
\begin{align*}
\gamma_1 L_{01} &= i_1 \pi \quad (i_1 \in \mathbb{N}) \\
\gamma_2 L_{02} &= i_2 \pi \quad (i_2 \in \mathbb{N})
\end{align*}
\]

(2)

In the plastic strain localization zones, perturbation δx_3 is extremum (see Fig. 2) (we set: $\delta x_{3,i} = \frac{\partial \delta x_3}{\partial x_{0i}}$ ($i = 1, 2$)):

\[
\begin{align*}
\delta x_{3,1}(x_{01}, x_{02}, \pm L_{03}) &= 0 \\
\delta x_{3,2}(x_{01}, x_{02}, \pm L_{03}) &= 0
\end{align*}
\]

(3)

In view of the form given to $\delta \vec{E}$, in the planes at $x_{03} = \pm L_{03}$, plastic strain concentrates along straight lines, defined by the following equations:

\[
\begin{align*}
\gamma_1 x_{01} + \gamma_2 x_{02} &= K_+ \pi \quad (K_+ \in \mathbb{N}) \\
\gamma_1 x_{01} - \gamma_2 x_{02} &= K_- \pi \quad (K_- \in \mathbb{N})
\end{align*}
\]

(4)

The wave vector $\vec{\gamma} = \gamma_1 \vec{e}_1 + \gamma_2 \vec{e}_2$ is normal to the localization lines “+”. The angle between the x_2-axis and these lines is equal to (see Fig. 3):

\[
\psi = \arctan \left(\frac{\lambda_1}{\lambda_2} \right) = \arctan \left(\frac{\gamma_2}{\gamma_1} \right)
\]

(5)

(for localization lines “−”, this angle equals $-\psi$).
We illustrate the search for the dominant mode and the plastic strain localization zones for different loadings and for a given material.

2.2 Material

Given a (fictitious) metal, whose physical properties are:

1. constant mass density: $\rho = 5000 \text{ kg.m}^{-3}$;
2. its yield strength Y obeys a constitutive law in the form proposed by Johnson and Cook [20], and, as in the model of Steinberg-Cochran-Guinan [21], we suppose that the ratio Y/G is independent of temperature. Thus we have:

$$Y(\varepsilon_p, T, \dot{\varepsilon}_p) = [A + B(\varepsilon_p + \varepsilon_i)^n] \left[1 + C \ln \left(\frac{\dot{\varepsilon}_p}{\dot{\varepsilon}_0} \right) \right]$$

$$\times \left[1 - \left(\frac{T - T_0}{T_{\text{melt}} - T_0} \right)^m \right] \quad (6)$$

$$G(T) = G_0 \left[1 - \left(\frac{T - T_0}{T_{\text{melt}} - T_0} \right)^m \right] \quad (7)$$

for:

$\dot{\varepsilon}_p > \dot{\varepsilon}_0 = 1 \text{ s}^{-1}$ and $T_0 = 300 \text{ K} \leq T \leq T_{\text{melt}} = 3000 \text{ K}$.

The coefficients we have chosen in relations (6) and (7) are given in Table 1; they are representative of the behaviour of usual metals (cf. [20], Table 1). In particular, with the value chosen for G_0, the order of magnitude of the ratio Y/G for metals, i.e. one percent, is satisfied;

3. constant isochoric heat capacity:

$$C_v = 500 \text{ J.kg}^{-1}.\text{K}^{-1}.$$

2.3 Dominant mode and plastic strain localization lines

We carry out tension and compression tests on plates made with the material of Section 2.2, whose initial thickness equals $2L_{03} = 2$ cm. By convention, x_1-direction is major principal stress direction ($|\Sigma_{11}| \geq |\Sigma_{22}|$). The initial velocity gradient along x_1-axis, $D_{11} = V_{01}/L_{01}$, equals 10 s^{-1} in absolute value. Two tension (or compression) tests along x_1-axis differ only in the value of the velocity gradient ratio $\alpha = D_{22}/D_{11}$.

We carry out the linear stability analysis at initial time $t_0 = 0$: then plastic strain ε_p equals zero, and temperature is supposed to be equal to 305 K.

Table 1. Properties of the material.

<table>
<thead>
<tr>
<th>ρ</th>
<th>A</th>
<th>B</th>
<th>ε_i</th>
<th>n</th>
<th>C</th>
<th>$\dot{\varepsilon}_0$</th>
<th>m</th>
<th>T_{melt}</th>
<th>G_0</th>
<th>C_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 g.cm$^{-3}$</td>
<td>1 GPa</td>
<td>1 GPa</td>
<td>1</td>
<td>0.5</td>
<td>0.01</td>
<td>1 s$^{-1}$</td>
<td>1.2</td>
<td>3000 K</td>
<td>100 GPa</td>
<td>500 J.kg$^{-1}$.K$^{-1}$</td>
</tr>
</tbody>
</table>

Fig. 4. Most unstable symmetric et antisymmetric modes, in tension along x_1-axis.
2.3.1 Tension along x_1-axis

Negative or zero velocity gradient ratio

Loadings between uniaxial tension ($\alpha = -0.5$) and plane tension ($\alpha = 0$).

Let us examine Figure 5a, and focus first on uniaxial tension ($\alpha = -0.5$; $\Sigma_{11} = Y$; $\Sigma_{22} = \Sigma_{33} = 0$). The only unstable defects are symmetric: these are local thinnings (necks).

We draw the map $\theta(\gamma_1, \gamma_2)$, and we identify the dominant mode, i.e. the pair of wave numbers $(\gamma_1^{(d)}, \gamma_2^{(d)})$ having the largest growth-rate. The associated wave vector $\vec{\gamma} = \gamma_1^{(d)} \vec{e}_1 + \gamma_2^{(d)} \vec{e}_2$ in the plane of the loading directions is normal to the thinnest lines, where plastic strain concentrates during the linear phase of the development of necking. These are zero rate extension lines (along these lines, we have: $D_{tt} = \partial v_t / \partial x_t = 0$, t denoting the tangent direction). They are inclined at Hill’s angle with respect to minor principal stress direction x_2 [2]:

$$\psi_{\text{Hill}} = \arctan \left(\frac{\gamma_2^{(d)}}{\gamma_1^{(d)}} \right) = \arctan \left(\sqrt{-D_{22}/D_{11}} \right) \quad (8)$$

Fig. 5. Linear stability analysis of the flow of plates, loaded in tension along major principal stress direction x_1: maps $\theta(\gamma_1, \gamma_2)$. (a) Tension along x_1-axis, compression along x_2-axis. (b) Tension simultaneously along x_1- and x_2-axes.
The dominant mode associated with these symmetric modes is all the less unstable that the absolute value of α increases (see Figs. 4a, 5a and 5b). Its orientation is given by Hill’s angle (cf. Fig. 4c).

Loadings between uniaxial tension ($\alpha = -0.5$) and simple shear ($\alpha = -1$).

Let us examine Figure 5a once again. From uniaxial tension along x_1-axis ($\alpha = -0.5$) to simple shear ($\alpha = -1$; $\Sigma_{11} = -\Sigma_{22} = Y/\sqrt{3}$), we see that unstable antisymmetric modes overtake symmetric modes. The wavelength along x_1-axis of the dominant mode associated with these antisymmetric modes is infinite ($\gamma_{1}^{(d)} = 0 \Rightarrow \lambda_{1}^{(d)} = \infty$), and plastic strain preferably concentrates along lines parallel to x_1-axis; the wavelength $\lambda_{2}^{(d)}$ is all the shorter (and the wave number $\gamma_{2}^{(d)}$ and the
growth-rate \(\theta^{(d)} \) all the larger) that we get nearer to simple shear (cf. Figs. 4a and 4b).

Tension simultaneously along \(x_1 \)- and \(x_2 \)-axes

(Fig. 5b)

The most unstable defects are symmetric with respect to the median plane of the plate: these are necks. For \(\alpha < 1 \), the wavelength along minor principal stress direction \(x_2 \) associated with the dominant mode is infinite (\(\gamma_2^{(d)} = 0 \Rightarrow \lambda_2^{(d)} = \infty \)), and plastic strain concentrates along lines parallel to \(x_2 \)-axis. Plane tension (\(\alpha = 0 \)) is the most unstable loading condition\(^2\). Getting from plane tension (\(\alpha = 0 \)) to balanced stretching (\(\alpha = 1 \)), the (symmetric) dominant mode becomes less and less unstable, and the associated wavelength \(\lambda_1^{(d)} \) larger and larger (cf. Fig. 4b). For balanced stretching, the wave vector \(\vec{\gamma} = \gamma_1 \vec{e}_1 + \gamma_2 \vec{e}_2 \) appears in the equations of the model only in its norm \(\gamma = \sqrt{\gamma_1^2 + \gamma_2^2} \), and the iso-\(\theta \) curves on the map \(\theta(\gamma_1, \gamma_2) \) are circle quarters centred at the origin, and all orientations for localization lines are equiprobable.

Finally, in the neighbourhood of plane tension, there exist also unstable antisymmetric modes (cf. Figs. 4a, 4b, and 5a, 5b). Their wavelength is comparable to the thickness of the plate, and is shorter than the one of the unstable symmetric modes. Due to viscous effects, they do not dominate the symmetric modes.

2.3.2 Compression along \(x_1 \)-axis (Figs. 6 and 7)

The most unstable defects are antisymmetric with respect to the median plane of the plate. For \(\alpha < 1 \), plastic strain concentrates preferably along lines parallel to minor principal stress direction \(x_2 \). For balanced compression (\(\alpha = 1 \)), as for balanced stretching, the wave vector \(\vec{\gamma} = \gamma_1 \vec{e}_1 + \gamma_2 \vec{e}_2 \) appears in the equations of the model only in its norm \(\sqrt{\gamma_1^2 + \gamma_2^2} \), and the iso-\(\theta \) curves in the \((\gamma_1, \gamma_2)\)-plane are circle quarters centred at the origin; all orientations of localization lines are equiprobable.

\(^3\) In fact, as in tension, this assertion needs to be somewhat tempered; more precisely, here the most unstable loading is such as: \(\alpha \approx 0.03 \), but the maximum of the curve \(\theta^{(d)}(\alpha) \) is very flat in the neighbourhood of plane compression.
Compression along x_1-axis, $-1 \leq \alpha=D_{22}/D_{11} \leq 1$

\begin{align*}
\alpha=-1 & & \alpha=0.001 \\
\alpha=0.5 & & \alpha=1
\end{align*}

All defects are antisymmetric

Fig. 7. Linear stability analysis of the flow of plates, loaded in compression along major principal stress direction x_1: maps $\theta(\gamma_1, \gamma_2)$.

3 Plane tension and compression

3.1 Competition between symmetric and antisymmetric modes

For plates loaded in tension (for velocity gradient ratio between -0.5 and 1) or in compression along major principal stress direction x_1, plane strain ($D_{22}=0$; the dimension of the plate along x_2-direction is infinite) is the most unstable loading condition. It has been widely investigated in the literature [12–14, 22–24]. For us, it is a particular case of our general 3D model. Then we observe a competition between symmetric and antisymmetric modes. This competition is all the more important that viscous effects are lower. The $\theta(\gamma_1)$ curve is made up of a succession of branches, associated with symmetric and antisymmetric modes, alternatively. The first branch, in the field of the longest wavelengths, is associated with symmetric
that this condition for the absence of a mini-

maximum: this result is consistent with the experimental

arise very little time before the applied force is

first instabilities, which are also long wavelength neck-

3.2 First instabilities in tension

and antisymmetric in compression (cf. Fig. 8).

modes in tension, and with antisymmetric modes in com-

In plane strain tension on non viscous ductile metals,

Fig. 8. Linear stability analysis of the flow of two plates loaded

initial time \(t_0 = 0 \). Thickness: \(2L_{03} = 2 \text{ cm} \) – initial velocity

gradient (in absolute value): \(|V_{01}|/L_{01} = 10 \text{ s}^{-1} \) – mass density

shear modulus \(G \)

\[\rho \]

\[\lambda \]

\[\epsilon \]

\[\alpha \]

\[\theta \]

\[\gamma \]

\[\epsilon \]

\[\eta \]

\[\frac{\delta Y}{Y \delta \epsilon_p} \]

\[\frac{Y'}{Y} \]

\[\frac{Y''}{
ho C_v} \]

\[\frac{2}{1 + \left(1 - \frac{a^2}{3} \right)^{1/2}} - 1 \]

\[\approx \frac{a}{4} \text{ setting: } a = \frac{Y'}{G} \]

Nevertheless, we have not been able to predict analyti-

cally the spatial dependence of such perturbations. We

Fig. 9. Plane strain tension on a non viscous material. Initial

thickness: \(2L_{03} = 2 \text{ cm} \) – initial velocity gradient: \(V_{01}/L_{01} = 10 \text{ s}^{-1} \)

with \(L_{01} = 10 \text{ m} \) – material: idem Figure 8, except

\(\epsilon_i = 0.1 \).

\[t = 5.959 \text{ ms} \]

\[t = 5.957 \text{ ms} \]

\[t = 5.958 \text{ ms} \]

\[t = 5.959 \text{ ms} \]

\[t = 5.960 \text{ ms} \]

\[t = 5.970 \text{ ms} \]

\[t = 5.980 \text{ ms} \]

\[t = 5.990 \text{ ms} \]

\[t = 6 \text{ ms} \]
development of plastic instabilities during tension and compression tests on metallic plates biaxially loaded in their plane. The material is supposed to satisfy the plasticity criterion of Von Mises, and the normality flow rule. We are undertaking to generalize our model to more complex materials, accounting for damage and anisotropy effects, studying the influence of the shape of the yield surface, and even texture. In the limiting case of static tests on thin plates, in the absence of damage effects and for an orthotropic material obeying Hill’s plasticity criterion, we will have to retrieve previous analytical results published in 1991 by Dudzinski and Molinari.

Fig. 10. Onset of a shear band network during a plane tension test on a material having constant yield strength Y (then inequality (9) is well satisfied), in lieu of a long wavelength multimodal perturbation of the material velocity field introduced at initial time $t_0 = 0$ of the simulation, all the more rapidly that the mesh is refined. Initial dimensions of the plate: $2L_0 = 20 \text{ cm}$; $2L_3 = 2 \text{ cm}$ – Stretching velocity $V_{01} = 1 \text{ m.s}^{-1}$ – Mass density $\rho = 5000 \text{ kg.m}^{-3}$ – yield strength $Y = 1 \text{ GPa}$ – shear modulus $G = 100 \text{ GPa}$ – Two simulations of the test have been carried out, with initially square elements, with sides $100 \mu\text{m}$ long for the finest mesh, and 1 mm long for the coarsest one [15]. We compare the plastic strain rate $\dot{\varepsilon}_p$ in the two simulations at time $t = 40 \mu\text{s}$.

4 Conclusion and future works

In this paper, we have shown results obtained carrying out a rigorous 3D linear stability analysis of the compression for static tests. When the condition (9) is satisfied, we see the onset of these networks in numerical simulations, all the more rapidly and densely that the mesh is refined. Due to the absence of a physical length (and time) scale in the problem, simulations are always mesh-sensitive (see Fig. 10). The transition from an elastic perfectly plastic constitutive law ($Y = \text{constant}$) to a “sufficiently” viscous Norton’s law ($Y \propto \dot{\varepsilon}^m_p$, with: $m \geq 0.05$) reintroduces a cutting wavelength.

References