Open Access
Issue
Mécanique & Industries
Volume 11, Number 6, Novembre-Décembre 2010
VCB (Vibrations, Chocs et Bruits)
Page(s) 505 - 512
DOI https://doi.org/10.1051/meca/2010058
Published online 09 December 2010
  1. G. Ricciardi, F. Saitta, A continuous vibration analysis model for cables with sag and bending stiffness, Eng. Struct. 30 (2008) 1459–1472 [CrossRef] [Google Scholar]
  2. Y.L. Xu, J.M. Ko, Z. Yu, Modal analysis of tower-cable system of Tsing Ma long suspension bridge, Eng. Struct. 19 (1997) 857–867 [CrossRef] [Google Scholar]
  3. N. Bouaanani, Numerical investigation of the modal sensitivity of suspended cables with localized damage, J. Sound Vib. 292 (2006) 1015–1030 [CrossRef] [Google Scholar]
  4. Y.Q. Ni, J.M. Ko, G. Zheng, Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity, J. Sound Vib. 257 (2002) 301–319 [CrossRef] [Google Scholar]
  5. B.H. Kim, T. Park, Estimation of cable tension force using the frequency-based system identification method, J. Sound Vib. 304 (2007) 660–676 [CrossRef] [Google Scholar]
  6. H. Zui, T. Shinke, Y. Namita, Practical formulas for estimation of cable tension by vibration method, Am. Soc. Civil Eng. J. Struct. Eng. 122 (1996) 651–656 [Google Scholar]
  7. F.T.K. Au, Y.S. Cheng, Y.K. Cheung, D.Y. Zheng, On the determination of natural frequencies and mode shapes of cable-stayed bridges, Appl. Math. Mod. 25 (2001) 1099–1115 [CrossRef] [Google Scholar]
  8. A. Bellino, G. Garibaldi, S. Marchesiello, Time-varying output-only identification of a cracked beam, Key Engineering Materials 413–414 (2009) 643–650 [CrossRef] [Google Scholar]
  9. S.S. Sergev, W.D. Iwan, The natural frequencies and mode shapes of cables with attached masses, J. Energy Resour. Technol. 103 (1981) 237–242 [CrossRef] [Google Scholar]
  10. S.P. Cheng, N.C. Perkins, Closed-form vibration analysis of sagged cable/mass suspensions, J. Appl. Mech. 59 (1992) 923–928 [CrossRef] [Google Scholar]
  11. M. Al-Qassab, S. Nair, Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass, J. Sound Vib. 270 (2004) 191–206 [CrossRef] [Google Scholar]
  12. B. Biondi, G. Muscolino, New improved series expansion for solving the moving oscillator problem, J. Sound Vib. 281 (2005) 99–117 [CrossRef] [Google Scholar]
  13. P. Van Overschee, B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, Boston London Dordrecht, 1996 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.