Open Access
Issue
Mechanics & Industry
Volume 14, Number 3, 2013
Page(s) 175 - 189
DOI https://doi.org/10.1051/meca/2013045
Published online 04 June 2013
  1. M. Zvanik, OC presentation at CFA show, Tampa, Florida, 2001
  2. IEC 61400-1, Wind turbines, Part 1: Design requirements, edition 3, International Electrotechnical Commission, 2005
  3. Guideline for the certification of offshore wind turbines, Germanische Lloyd, 2005
  4. Guideline for the certification of wind turbines, with supplement 2004, Germanische Lloyd, 2003
  5. http://www.gl-group.com
  6. http://www.DNV.com
  7. http://www.tuv.com
  8. Guidelines for Design of Wind Turbines, Det Norske Veritas and Risø National Laboratory, 2002
  9. Offshore standard DNV-OS-J101 Design of offshore wind turbine structures, Det Norske Veritas, 2004
  10. Offshore standard DNV-OS-J102 Design and manufacture of wind turbine blades, Offshore and onshore wind turbines, Det Norske Veritas, 2006
  11. C.W. Kensche, Fatigue of composites for wind turbines, Int. J. Fatigue 28 (2006) 1363–1374 [CrossRef]
  12. Gurit, Section 2: Structural Design, in Wind energy composite materials handbook, downloadable from: http://www.gurit.com
  13. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, 2001, John Wiley & Sons
  14. S. Drapier, A. Pagot, A. Vautrin, P. Henrat, Influence of the stitching density on the transverse permeability of non-crimped new concept (NC2) multiaxial reinforcements: measurements and predictions, Compos. Sci. Technol. (2002) 1979–1991
  15. T.S. Lundström, The permeability of non-crimp stitched fabrics, Compos. Part A 31 (2000) 1345–1353 [CrossRef]
  16. M. Nordlund, T.S. Lundström, Numerical Study of the Local Permeability of Noncrimp Fabrics, J. Compos. Mater. 39 (2005) 929–947 [CrossRef]
  17. M. Nordlund, T.S. Lundstrom, V. Frishfelds, A. Jakovics, Permeability network model for non-crimp fabrics, Composites Part A: Appl. Sci. Manufacturing, Selected Contributions from the 7th International Conference on Flow Processes in Composite Materials held at University of Delaware, USA 37 (2006) 826–835
  18. L.E. Asp, F. Edgren, A. Sjögren, Effects of stitch pattern on the mechanical properties of non-crimp fabric composites, in ECCM 11, Rhodos, 2004
  19. F. Edgren, D. Mattsson, L.E. Asp, J. Varna, Formation of damage and its effects on non-crimp fabric reinforced composites loaded in tension, Compos. Sci. Technol. 64 (2004) 675–692 [CrossRef]
  20. S.V. Lomov, D.S. Ivanov, K. Vallons, I. Verpoest, D.V. Klimshin, T.C. Truong, Peculiarities of damage behaviour of NCF carbon/epoxy laminates under tension, in ICCM 16, Kyoto, Japan, 2007
  21. K. Vallons, The behaviour of carbon fibre–epoxy NCF composites under various mechanical loading conditions, Doctoral dissertation, Dept. of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, 2009
  22. K. Vallons, S.V. Lomov, I. Verpoest, Fatigue and post-fatigue behaviour of carbon/epoxy non crimp fabric composites. in 16th international conference on composite materials, Kyoto, Japan, 2007
  23. K. Vallons, S.V. Lomov, I. Verpoest, Damage evolution in static and fatigue tensile loading of carbon/epoxy NCF composites, in ECOMAS Thematic Conference on Mechanical Response of composites, Porto, 2007
  24. K. Vallons, S.V. Lomov, I. Verpoest, Mechanical properties and damage evolution during static and fatigue loading of carbon-epoxy ncf composites, in Sampe Europe International Conference ’07, Paris, 2007
  25. T.C. Truong, M. Vettori, S. Lomov, I. Verpoest, Carbon composites based on multi-axial multi-ply stitched preforms, Part 4. Mechanical properties of composites and damage observation, Composites Part A 36 (2005) 1207–1221 [CrossRef]
  26. M. Vettori, T.T. Chi, S.V. Lomov, I. Verpoest, Progressive damage characterization of stitched, biaxial, multi-ply carbon fabrics composites, in ECCM 11, Rhodos, 2004
  27. V. Carvelli, T.T. Chi, M.S. Larosa, S.V. Lomov, C. Poggi, D.R. Angulo, I. Verpoest, Experimental and numerical determination of the mechanical properties of multi-axial multi-ply composites, in ECCM 11, Rhodos, 2004
  28. G.A. Bibo, P.J. Hogg, M. Kemp, Mechanical characterisation of glass- and carbon-fibre-reinforced composites made with non-crimp fabrics, Compos. Sci. Technol. 57 (1997) 1221–1241 [CrossRef]
  29. A.P. Godbehere, A.R. Mills, P. Irving, Non-crimp fabrics versus prepreg CFRP composites – A comparison of mechanical performance, in 6th international conference on fibre reinforced composites – FRC’94, Newcastle, 1994
  30. P.A. Smith, Carbon Fiber Reinforced Plastics–Properties (2.04), in Comprehensive Composite Materials, Elsevier Sciences Ltd, 2000, pp. 107–150
  31. S. Sandford, L. Boniface, S.L. Ogin, S. Anand, D. Bray, C.R. Messenger, Damage accumulation in non-crimp fabric based composites under tensile loading, in Proceedings of the Eighth European Conference on Composite Materials, ECCM-8,1998, Naples, Italy, Woodhead Publishing, Cambridge, UK
  32. Company product information Owens Corning: Double Bias Fabrics (±45°)
  33. Company product information Owens Corning: Quadriaxial Fabrics (0°/90°/±45°)
  34. Company product information Owens Corning: Triaxial Fabrics (0°/±45° OR 90°/±45°)
  35. Company product information Owens Corning: Unidirectional Fabrics (0° or 90°)
  36. C.W. Kensche, Fatigue of materials and components for wind turbine rotor blades, Office for official publications of the European communities, 1996
  37. J. Wedel-Heinen, J. KrygerTadich, Qualification of materials and blades for wind turbines, in RisøBlade Materials Symposium, 2006
  38. S. Wessels, M. Strobel, A.V. Wingerde, I. Koprek, H.-G. Busmann, Improved fatigue design methods for offshore wind turbine rotor blades condisering non-linear Goodman analysis combined with finite element analysis, in EWEC, Warsaw, 2010
  39. D. Veldkamp, A probabilistic approach to wind turbine fatigue design, in EWEC, Milan, Italy, 2007
  40. B. Hayman, J. Wedel-Heinen, P. Brøndsted, Material challenges in present and future wind energy, MRS Bulletin 33 (2008), www.mrs.org/bulletin
  41. L.G.J. Janssen, A.M.V. Wingerde, C.W. Kensche, T.P. Philippidis, P. Brøndsted, A.G. Dutton, R.P.L. Nijssen, O. Krause, Reliable Optimal Use of Materials for Wind Turbine Rotor Blades, OPTIMAT BLADES, Report ECN-C-06-023, Office for Official Publications of the European Communities, Luxembourg, 2006
  42. J. Wedel-Heinen, J.K. Tadich, C. Brokopf, L.G.J. Janssen, A.M.V. Wingerde, D.R.V.V. Delft, C.W. Kensche, T.P. Philippidis, A.P. Brøndsted, G. Dutton, R.P.L. Nijssen, I. Verpoest, Implementation of OPTIMAT in Technical Standards, OPTIMAT BLADES, OBTG6R002 rev. 8, ENK6-CT-2001-00552 PROJECT No.: NNE5-2001-00174, 2006
  43. IEC 61400-23, Technical Specification, Wind turbine generation systems – Part 23: Full-scale structural testing of rotor blades, International Electrotechnical Commission, 2001
  44. K.H. Boller, Fatigue characteristics of RP laminates subjected to axial loading, Modern Plastics 41 (1964) 145
  45. J.W. Davis, J.A. McCarthy, J.N. Schurb, Fatigue resistance of reinforced plastics, Mater. Des. Engng. (1964) 87–91
  46. J.W. Dally, L.J. Broutman, Frequency effects on the fatigue of glass reinforced plastics, J. Compos. Mater. 1 (1967) 424–442 [CrossRef]
  47. K.H. Boller, Fatigue fundamentals for composite materials, ASTM STP 460 (1969) 217–235
  48. D. Dew-Hughes, J.L. Way, Fatigue of fibre – reinforced plastics: a review, Compos. 4 (1973) 167-173 [CrossRef]
  49. C.K.H. Dharan, Fatigue failure in graphite fibre and glass fibre-polymer composites, J. Mater. Sci. 10 (1975) 1665–1670 [CrossRef]
  50. J.V. Gauchel, I. Steg, J.E. Cowling, Reducing effect of water on fatigue properties of S-glass epoxy composites, ASTM STP 569 (1975) 45–52
  51. J.N. Davis, G.J. Sundsrud, Fatigue data on a variety of nonwoven glass composites for helicopter rotor blades, ASTM STP 674 (1979) 137–148
  52. S.K. Joneja, Matrix contribution to fatigue behavior of glass reinforced polyester composites, J. Reinforced Plastics Compos. 6 (1987) 343–356 [CrossRef]
  53. O. Konur, F.L. Matthews, Effect of the properties of the constituents on the fatigue performance of composites: a review, Compos. 20 (1989) 317–328 [CrossRef]
  54. P.T. Curtis, Tensile fatigue mechanisms in unidirectional polymer matrix composite materials, Int. J. Fatigue 13 (1991) 377–382 [CrossRef]
  55. M.R. Bhat, C.R.L. Murthy, Fatigue damage stages in unidirectional glass-fibre-epoxy composites: identification through acoustic emission technique, Int. J. Fatigue 15 (1993) 401–405 [CrossRef]
  56. H. El Kadi, F. Ellyin, Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae, Compos. 25 (1994) 917–924 [CrossRef]
  57. G.D. Sims, Fatigue test methods, problems and standards, in Fatigue in composites, in: B. Harris (ed.), Woodhead publishing limited, 2003, pp. 36–63
  58. V. Giavotto, V. Wagner, M. Caslini, C. Zanotti, Consideration of early fatigue damage on damage accumulation and on delamination mechanism in composite materials structures, in 14th ICAF conference, 1987
  59. M.J. Salkind, Fatigue of composite materials, ASTM STP 497 (1982) 143–169
  60. R. Talreja, K. Anthony, Z. Carl, Fatigue of polymer matrix composites, in Comprehensive Composite Materials, Pergamon, Oxford, 2000, pp. 529–552
  61. J. Gassan, T. Dietz, Fatigue behavior of cross-ply glass-fiber composites based on epoxy resins of different toughnesses, Compos. Sci. Technol. 61 (2001) 157–163 [CrossRef]
  62. M.J. Owen, G. Rose, Polyester flexibility versus fatigue behaviour of fibre reinforced plastics, Mod. Plast. 47 (1970) 130–138
  63. M.J. Owen, Fatigue, glass reinforced plastics, in: B. Parkyn (ed.), Iliffe Books, London, 1970, pp. 251–267
  64. G.M. Newaz, Influence of matrix material on flexural fatigue behaviour of unidirectional composites, Compos. Sci. Technol. 24 (1985) 199–214 [CrossRef]
  65. J.A. Epaarachchi, P.D. Clausen, An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies, Composites Part A Appl. Sci. Manufacturing 34 (2003) 313–326 [CrossRef]
  66. P.W. Bach, ECN investigation of polyester composite materials, in Fatigue of materials and components for wind turbine rotor blades, in: C.W. Kensche (ed.), German Aerospace Establishment, 1996, pp. 10–38
  67. P.K. Mallick, Fiber-reinforced composites: Materials, Manufacturing and Design, 3rd edition, CRC Press – Taylor & Francis Group, 2008
  68. D.S. Cairns, J.D. Skramstad, Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing, 2000, Sandia National Laboratories, SAND2000-1425
  69. E.B. Larsen, Pressure bag molding: manufacturing, mechanical testing, non-destructive evaluation, and analysis, 2007, Sandia National Laboratories, SAND2006-7855P
  70. OPTIMAT BLADES PROJECT, data and publications available from: http://www.wmc.eu/optimatblades.php
  71. DOE/MSU composite material fatigue database, March 31, 2010 version 19.0. Available from: http://windpower.sandia.gov/other/973002upd0310.pdf
  72. J.F. Mandell, R.M. Reed, D.D. Samborsky, Fatigue of fiberglass wind turbine blade materials, Department of chemical engineering, Montana state university, SAND92-7005, 1992
  73. J.F. Mandell, D.D. Samborsky, DOE/MSU Composite material fatigue database: Test methods, materials, and analysis, Sandia National Laboratories, Albuquerque, NM, Contractor Report SAND97-3002, 1997
  74. J.F. Mandell, D.D. Samborsky, D.S. Cairns, Fatigue of composite materials and substructures for wind turbine blades, Sandia National Laboratories, Albuquerque, NM Contractor Report SAND2002-0771, 2002
  75. J.F. Mandell, D.D. Samborsky, D.W. Combs, M.E. Scott, D.S. Cairns, Fatigue of composite material beam elements representative of wind turbine blade substructure, National Renewable Energy Laboratory, NREL Contractor Report SR-500-24379, 1998
  76. N.K. Wahl, J.F. Mandell, D.D. Samborsky, Spectrum fatigue lifetime and residual strength for fiberglass laminates, Sandia National Laboratories, A lbuquerque, NM Contractor Report SAND2002-0546, 2002
  77. M. Wouters, Effects of fibre bundle size and stitch pattern on the static properties of unidirectional carbon-fibre non-crimp fabric composites, in Department of applied physics and mechanical engineering, division of polymer engineering, Lulea university of technology, Lulea, 2005, p. 85
  78. D.D. Samborsky, Fatigue of E-glass fiber reinforced composite materials and substructures, Montana State University, Bozeman, Montana, 1999
  79. J. Locke, U. Valencia, Design studies for twist-coupled wind turbine blades, Sandia National laboratories, SAND2004-0522, 2004
  80. Gurit, Section 3: Blade Manufacturing Process, in Wind energy composite materials handbook, downloadable from: http://www.gurit.com
  81. F. Keßling, Modellierung des aerolastischen gesamtsytems einer windturbine mit hilfe symbolischer programmierung, DFVLR, DFVLR-FB 84-10, 1984
  82. P.J. Hogg, Manufacturing challenges for wind turbines. in Advanced Manufacturing for Composite Technologies Conference, Manchester, UK, 2008

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.