Issue |
Mechanics & Industry
Volume 21, Number 1, 2020
|
|
---|---|---|
Article Number | 102 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/meca/2019078 | |
Published online | 07 January 2020 |
Regular Article
Analysis of welding properties using various horn-tip patterns in the ultrasonic metal welding process
Smart Manufacturing Process R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Korea
* e-mail: kjw0607@kitech.re.kr
Received:
21
February
2019
Accepted:
28
October
2019
The present study was conducted to investigate how the characteristics of welds are affected by the horn-tip pattern shape, in order to assess how to efficiently transfer the vibration energy to a base material through the horn. Energy transfer was evaluated using the indentation marks. The experiment was carried out with aluminum and copper by combining the conditions from four horn-tip patterns, six pressure values, and ten welding time values. The aspect ratio of the indentation marks on the weld surfaces was measured. The effects of the applied pressure, welding time, and horn-tip pattern shape on the aspect ratio were analyzed, and it was found that the horn-tip pattern shape affects the aspect ratio significantly. The aspect ratio was suggested as an analytical reference, and its correlations with the shear strength and the hardness of the welds were verified. In addition, the experiment performed with aluminum and copper, which have different mechanical properties, under the same welding conditions showed that the aspect ratio was dependent on the mechanical properties of the materials. In conclusion, as the density of the horn-tip pattern is decreased, less of the vibration energy was lost, increasing the strength of the welds. Experimental results showed that shear strength of copper was nearly 400 N when the aspect ratio was close to the value of 1. The highest peak of horn-tip pattern forms the lowest aspect ratio of the indentation mark, which can be indicated that the decrease of the aspect ratio effect to the improvement of welds strength. Aspect ratio of horn-tip pattern D, which dimensions are pitch 1.5 mm, height 0.75 mm and stub tooth 0.7 mm was closely to the value of 1 compared to the other patterns.
Key words: Ultrasonic welding / aluminum sheet / aspect ratio / copper sheet / horn-tip pattern / tensile shear strength
© J. Kim et al., published by EDP Sciences 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.