Open Access
Issue
Mécanique & Industries
Volume 5, Number 3, Mai-Juin 2004
Page(s) 339 - 351
DOI https://doi.org/10.1051/meca:2004035
Published online 07 June 2004
  1. Groupe de travail : Sciences Physiques en Microgravité, Séminaire de prospective : Évolutions à moyen et long terme des programmes scientifiques spatiaux, Deauville, 28–31 octobre, Ed. CNES, 1985, pp. 91–99 [Google Scholar]
  2. D. Beysens, R. Blanc, B. Zappoli, Physique des fluides et des milieux aléatoires. Rapport du Séminaire de prospective microgravité "Sciences physiques et Sciences de la vie", Aix-en-Provence, 3–5 avril 1991, Ed. CNES [Google Scholar]
  3. D. Beysens, B. Zappoli, Sciences de la matière en micropesanteur : la combustion. Séminaire de prospective en Sciences Spatiales, Arcachon, 9–12 mars 1998, Ed. CNES, 1999, pp. 223–225 [Google Scholar]
  4. R. Prud'homme, D. Langevin, G. Faivre, (Eds.) Sciences de la Matière et Microgravité, Colloque 86, J. Phys. France IV 11 (2001) pr6 [Google Scholar]
  5. S. Chandrasekhar, Hydrodynamic and hydro-magnetic stability, Clarendon Press, Oxford, 1961 [Google Scholar]
  6. F.B. Carleton, F.J. Weinberg, Electric field-induced flame convection in the absence of gravity, in Combustion experiments during KC-135 parabolic flights, ESA SP-1113, ISBN 92-9092-008-4, 1989 [Google Scholar]
  7. C. Monnereau, M. Vignes-Adler, B. Kronberg, Influence of gravity on foams, J. Chim. Phys. 96 (1999) 958–967 [Google Scholar]
  8. D. Benielli, M. El Ganaoui, E. Semma, N. Bergeon, H. Jamgotchian, P. Voge, B. Billia, P. Bontoux, Effect of the thermal convection on directional solidification of succinonitrile–acetone alloy: Comparison between experimental and numerical studies, J. Phys. France IV 11 (2001) pr6-135–142 [Google Scholar]
  9. D. Beysens, Near-critical fluids under microgravity : highlights and perspectives for Europe, J. Phys. France IV 11 (2001) Pr6-7-22 [Google Scholar]
  10. Jr.H. Merte, J.A. Clark, Boiling heat transfer with cryogenic fluids at standard, fractionnal, and near-zero gravity, J. Heat Transfer 86 (1964) 351 [Google Scholar]
  11. P. Lehmann, T. Alboussière, R. Moreau, V. Uspenski, MHD convection control applied to chemical diffusivities measurements, J. Chim. Phys. 96 (1999) 1105–1110 [CrossRef] [EDP Sciences] [Google Scholar]
  12. R. Touhiri, H. Benhadid, D. Henry, Stabilisation par champ magnétique de la convection en cavité cylindrique chauffée par le bas, J. Chim. Phys. 96 (1999) 1098–1104 [CrossRef] [EDP Sciences] [Google Scholar]
  13. L. Landau, E. Lifschitz, Mécanique des fluides, Éditions MIR 1971 [Google Scholar]
  14. L.E. Scriven, C.V. Sternling, On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity, Chem. Engng. Mech. 19 (1964) 321–340 [Google Scholar]
  15. D.A. Nield, Surface tension and buoyancy effects in cellular convection, J. Fluid Mech. 19 (1964) 341–352 [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Bergeon, D. Henry, H. Benhadid, Marangoni-Bénard instability in microgravity conditions with Soret effect, International J. Heat and Mass Transfer 37 (1994) 1545 [CrossRef] [Google Scholar]
  17. R. Gatignol, R. Prud'homme, Mechanical and thermodynamical modeling of fluid interfaces, Series of Advances in Mathematics for Applied Sciences, vol. 58, World Scientific, Singapore, 2001 [Google Scholar]
  18. G.A.E. Godsave, Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel, 4th Symposium (International) on Combustion, The Combustion Institute, 1953, pp. 818–830 [Google Scholar]
  19. D.B. Spalding, The combustion of liquid fuels, 4th Symposium (International) on Combustion, The Combustion Institute, 1953, pp. 847–864 [Google Scholar]
  20. I. Gökalp, C. Chauveau, X. Chesneau, Droplet combustion in microgravity, in Hydromechanics and Heat and Mass Transfer in Microgravity, H.U. Walter (ed.), Gordon & Breach, 1992 [Google Scholar]
  21. B. Abramzon, W. A. Sirignano, Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transfer, 32(9) (1989) 1605–1618 [CrossRef] [Google Scholar]
  22. F.A. Williams, Combustion Theory, The Benjamin Cumming Pub. Cy., Inc., 2d Ed., 1985 [Google Scholar]
  23. J. Torero, T. Vietoris, G. Legros, P. Joulain, Évaluation du nombre de transfert de masse réel d'une flamme ascendante, J. Phys. France IV 11 (2001) pr6-291–300 [Google Scholar]
  24. C. Chauveau, I. Gökalp, D. Segawa, T. Kadota, H. Enomoto, Effects of reduced gravity on methanol droplet combustion at high pressures, The Twenty-Eight International Symposium on Combustion, 2000 [Google Scholar]
  25. B. Vieille, C. Chauveau, X. Chesneau, A. Odeïde, I. Gökalp, Proc. Combust. Inst. 26, 1996, pp. 1259–1265 [Google Scholar]
  26. S. Akamatsu, S. Bottin-Rousseau, G. Faivre, La dynamique de solidification des eutectiques lamellaires : des échantillons minces aux systèmes massifs, J. Phys. France IV 11 (2001) pr6-127–134 [Google Scholar]
  27. D.L. Dietrich, P.M. Struk, K. Kitano, M. Ikegami “Combustion of interacting droplet arrays in a micro-gravity environment”, Fifth International Micro-gravity Combustion Workshop, Proceedings, NASA Glenn Research Center and NCMR, Cleveland, OH, May 18–20 1999, 281–284 [Google Scholar]
  28. S. Suard, C. Nicoli, P. Haldenwang, Vaporisation controlled regime of flames propagating in fuel-lean spray, J. Phys. France IV 11 (2001) pr6-301–310. [Google Scholar]
  29. Y. Garrabos, C. Chabot, R. Wunenburger, J.-P. Delville, D. Beysens Critical boiling phenomena observed in microgravity, J Chim. Phys. 96 (1999) 1066–1073 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.