Open Access
Issue
Mécanique & Industries
Volume 5, Number 4, Juillet-Août 2004
Page(s) 469 - 479
DOI https://doi.org/10.1051/meca:2004047
Published online 28 September 2005
  1. S. Mall, T. Nicholas, Titanium matrix composites, S. Mall, T. Nicholas (ed.), Technomic Publications, 1998 [Google Scholar]
  2. J.Y. Guédou, Les matériaux pour turboréacteurs aéronautiques, un défi à la mécanique thermique, 14e Congrès Français de Mécanique, Toulouse, 1999 [Google Scholar]
  3. T.T. Cheng, I.P. Jones, R.A. Shatwell, P. Doorbar, The microstructure of Sigma 1140+ SiC fibres, Mat. Sci. Eng. A260 (1999) 139–145 [Google Scholar]
  4. K. Dyos, R.A. Shatwell, The effect of a weak W/SiC interface on the strength of Sigma silicon carbide monofilament, J. Microsc. 196 (1999) 175–184 [CrossRef] [PubMed] [Google Scholar]
  5. R.A. Shatwell, Adhesion of SM1140+ coatings to silicon carbide substrate in Sigma monofilament, Mat. Sci. Techn. 10 (1994) 552–557 [Google Scholar]
  6. M. Peters, J. Kumpfert, C. Leyens, D. Weinem, W.A. Kaysser, Y.T. Lee, Structure and properties of titanium alloys for high temperature applications, Proc. 2nd Pacific Rim international conference on advanced materials and processing, K.S. Shin, J.K. Yoon, S.J. Kim (ed.), The Korean Institute of Metals and Materials, 1995, pp. 2419–2426 [Google Scholar]
  7. Z.X. Guo, B. Derby, Solid-state fabrication and interfaces of fibre reinforced metal matrix composites, Progress in Materials Science 39 (1995) 411–495 [CrossRef] [Google Scholar]
  8. Z.X. Guo, N.R.F. Beeley, A novel powder coated fibre pre-processing route to metal-matrix composites, Adv. Eng. Mat. 3 (2001) 223–226 [CrossRef] [Google Scholar]
  9. B. Dambrine, J. Feigenblum, M. Garnier, J. Hamburger, Coating of fibres with molten metals, Brevet WO 9937828, EP 931846, FR 2773820, 2002 [Google Scholar]
  10. A. Vassel, Interface considerations in high-temperature titanium metal matrix composites, J. Microsc. 185 (1997) 303–309 [CrossRef] [Google Scholar]
  11. U. Ramamurty, F.C. Dary, F.W. Zok, A method for measuring residual strains in fiber-reinforced titanium matrix composites, Acta Mater. 44 (1996) 3397–3406 [CrossRef] [Google Scholar]
  12. E. Maire, A. Owen, J.Y. Buffiere, P.J. Withers, A synchroton X-ray study of a Ti/SiCf composite during in situ straining, Acta Mater. 49 (2001) 153–163 [CrossRef] [Google Scholar]
  13. L. Baroumes, Comportement des composites à matrice métallique : du processus de fabrication à la tenue en service, Thèse de l'Université Paris VI, 1998 [Google Scholar]
  14. B. Dambrine, M. Hartley, Développement de méthodes d'essais mécaniques pour CMM base titane, AGARD Report 796, 1994 [Google Scholar]
  15. M.P. Thomas, S. Bate, J.G. Robertson, M.R. Winstone, Developement of novel specimens for mechanical testing of fibre reinforced titanium metal matrix composite, Mat. Sci. Techn. 14 (1998) 1009–1014 [Google Scholar]
  16. K. Takashima, K.M. Fox, C. Barney, J.G. Pursell, P. Bowen, Characterisation of acoustic emission signals during fracture and fatigue of SiC fibre reinforced titanium alloy composites, Mat. Sci. Techn. 12 (1996) 917–922 [Google Scholar]
  17. M.P. Thomas, M.R. Winstone, Transverse tensile behaviour of fibre reinforced titanium metal matrix composites, J. Mater. Sci. 33 (1998) 5499–5508 [CrossRef] [Google Scholar]
  18. N. Legrand, Fatigue de composites à matrice métallique base titane à renfort unidirectionnel de fibre SiC, Thèse de l'École nationale supérieure des mines de Paris, 1997 [Google Scholar]
  19. M.N. Tamin, H. Ghonem, Fatigue damage mechanisms of bridging fibers in titanium metal matrix composites, J. Eng. Mat. Technol. 122 (2000) 370–375 [CrossRef] [Google Scholar]
  20. S. Hertz-Clémens, Comportement en fatigue anisotherme d'un composite SiC/Ti, Thèse de l'École nationale supérieure des mines de Paris, 2002 [Google Scholar]
  21. A. Faucon, Étude de quelques mécanismes d'endommagement au sein d'un matériau composite à matrice d'alliage de titane renforcée par des filaments de carbure de silicium, Thèse de l'Université Bordeaux 1, n° 2142bis, 1999 [Google Scholar]
  22. N. Carrère, Sur l'analyse multi-échelle des matériaux composites à matrice métallique : application au calcul de structure, Thèse de l'École polytechnique, 2001 [Google Scholar]
  23. K. Debray, Amélioration du couplage fibre–matrice au sein de matériaux composites à matrice d'alliage de titane, Thèse de l'Université Bordeaux 1, n° 1268, 1995 [Google Scholar]
  24. J.F. Fromentin, Réalisation et comportement d'interphases à gradient de propriétés-application au matériau composite SiC/Ti, Thèse de l'Université Bordeaux 1, n° 1675, 1997 [Google Scholar]
  25. B. Guichet, Identification de la loi de comportement interfacial d'un composite SiC/Ti, Thèse de l'École centrale de Lyon, 1998 [Google Scholar]
  26. S. Malon, Caractérisation des mécanismes d'endommagement dans les composites à matrice métallique de type SiC, Thèse de l'École nationale supérieure de Cachan, 2000 [Google Scholar]
  27. J.I. Eldridge, P.K. Brindley, Investigation of interfacial shear strength in a SiC fibre/Ti-24Al-11Nb composite by a fibre push-out technique, J. Mech. Sc. Letters 8 (1989) 1451–1454 [CrossRef] [Google Scholar]
  28. J.W. Hutchinson, H.M. Jensen, Models of fiber debonding and pullout in brittle composites with friction, Mech. Mater. 9 (1990) 139–163 [CrossRef] [Google Scholar]
  29. V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal, Mat. Sci. Eng. A125 (1990) 203–213 [Google Scholar]
  30. J.-L. Chaboche, R. Girard, A. Schaff, Numerical analysis of composite systems by using interphase/interface models, Computational Mech. 20 (1997) 3–11 [CrossRef] [Google Scholar]
  31. P.-M. Lesnes, N. Allio, R. Valle, Combined effects of the fibre distribution and of the fiber matrix or interphase matrix transverse modulus ratio on the possible fracture modes of unidirectional composites submitted to a transverse Loading, Acta Metall. Mater. 43 (1995) 4247–4266 [CrossRef] [Google Scholar]
  32. E.S. Folias, On the prediction of failure of a fibre/matrix interface of a composite subjected to a transverse tensile load, J. Comp. Mater. 25 (1991) 869–886 [Google Scholar]
  33. D.B. Gundel, B.S. Majumdar, D.B. Miracle, Evaluation of the transverse response of fibre-reinforeced composite using a cross-shaped sample geometry, Scripta Metall. Mater. 33 (1995) 2057–2065 [CrossRef] [Google Scholar]
  34. N. Carrere, D. Boivin, R. Valle, A. Vassel, Local texture measurements in a SiC/Ti composite manufactured by the foil-fibre-foil technique, Scripta Mater. 44 (2001) 867–72 [CrossRef] [Google Scholar]
  35. F.H. Leroy, Rupture des composites unidirectionnels à fibre de carbone et matrice thermo-durcissable : approche micro-macro, Thèse de l'Université Bordeaux 1, n° 1589, 1996 [Google Scholar]
  36. L. Molliex, Approche micromécanique de la résistance en traction de composites à matrice métallique, Thèse de l'École centrale de Paris, 1995 [Google Scholar]
  37. M. Ibnabdeljalil, W.A. Curtin, Strength and reliability of fiber reinforced composites: localized load sharing and associated size effects, Int. J. Solids Structures 34 (1997) 2649–2668 [CrossRef] [Google Scholar]
  38. S.J. Zhou, W.A. Curtin, Failure of fiber composites: a lattice Green function model, Acta Metall. Mater. 43 (1995) 3093–3104 [CrossRef] [Google Scholar]
  39. Z. Xia, W.A. Curtin, P.W.M. Peters, Multiscale modeling of failure in metal matrix composites, Acta mater. 49 (2001) 273–287 [CrossRef] [Google Scholar]
  40. R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids 13 (1965) 89–101 [CrossRef] [Google Scholar]
  41. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. Roy. Soc. London A348 (1966) 101–107 [Google Scholar]
  42. M. Berveiller, A. Zaoui, An extension of the self-consistent scheme to plasticity flowing polycrystal, J. Mech. Phys. Solids 6 (1979) 325–344 [Google Scholar]
  43. R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of non linear composites and polycristals, J. Mech. Phys. Solids 48 (2000) 1203–1227 [CrossRef] [MathSciNet] [Google Scholar]
  44. P. Ponte Castaneda, Exact second order estimates for the effective mechanical properties of non-linear composite materials, J. Mech. Phys. Solids 44 (1996) 827–862 [CrossRef] [MathSciNet] [Google Scholar]
  45. G. Dvorak, Transformation field analysis of inelastic composite material, Proc. Roy. Soc. Lond. A437 (1992) 311–327 [Google Scholar]
  46. F. Feyel, Application du calcul parallèle aux modèles à grand nombre de variables internes, Thèse de l'École nationale supérieure des mines de Paris, 1998 [Google Scholar]
  47. S. Kruch, Comportement global des matériaux composites viscoélastiques, Thèse de l'Université Paris VI, 1988 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.