Open Access
Issue
Mécanique & Industries
Volume 5, Number 5, Septembre-Octobre 2004
Page(s) 541 - 551
DOI https://doi.org/10.1051/meca:2004055
Published online 19 November 2004
  1. J.B. Hannay, J. Hogarth, On the solubility of solids in gases, Proceedings of the Royal Society of London, 29, 1879, p. 324 [Google Scholar]
  2. K. Zosel, Process for recovering caffeine, U.S. Patent 3 806 619, Avril 1974 [Google Scholar]
  3. K. Zosel, Process for the direct decaffeination of aqueous coffee extract solutions, U.S. Patent 4 348 422 (Sep. 7, 1982) [Google Scholar]
  4. E.B. Auerbach, Process for treating, separating, and purifying oils, U.S. Patent 1 805 751 (1931) [Google Scholar]
  5. V. Krukonis, G. Brunner, M. Perrut, Industrial operations with supercritical fluids : current processes and perspectives of the future. Proceedings of the 3rd Intenational Symposium on Supercritical Fluids, Strasbourg, 1994, vol. 1, p. l [Google Scholar]
  6. P. Pellerin, Comparing extraction by traditional solvents with supercritical extraction: An economic and environmental standpoint, Proceedings of the 6th International Symposium on Supercritical fluids, Versailles, 2003, pp. 11–15 [Google Scholar]
  7. M. Perrut, Supercritical fluid applications: Industrial developments and economic issues, in Eng. Chem. Res. 39 (2000) 4531–4535 [Google Scholar]
  8. T. Gamse, I. Rogler, R. Marr, Use of supercritical fluids for different processes including new developments: A review, Chem. Eng. and Proc. 39 (2000) 19–28 [CrossRef] [Google Scholar]
  9. K. Udaya Sankar, Supercritical fluid carbon dioxide technology for extraction of spices and other high value bio-active compounds, dans Supercritical Fluid Processing of Food and Biomaterials, Chapman and Hall, 1994, pp. 155–167 [Google Scholar]
  10. A. Castera, Production of low-fat and low-cholesterol foodstuffs or biological products by supercritical CO2 extraction: processes and applications, dans Supercritical Fluid Processing of Food and Biomaterials, Chapman and Hall, 1994, pp. 187–201 [Google Scholar]
  11. S. Vijayan, D.P. Byskal, L.P. Buckley, Separation of oil from fried chips by a supercritical extraction process: An overview of bench-scale experience and process economics, dans Supercritical Fluid Processing of Food and Biomaterials, Chapman and Hall, 1994, pp. 75–92 [Google Scholar]
  12. U. Nguyen, D.A. Evans, G. Frakman, Natural antioxidants produced by supercritical extraction, dans Supercritical Fluid Processing of Food and Biomaterials, Chapman and Hall, 1994, pp. 103–113 [Google Scholar]
  13. G.B. Guarise, A. Bertucco, P. Pallado, Carbon dioxide as a supercritical solvent in fatty acid refining: Theory and practice, dans Supercritical Fluid Processing of Food and Biomaterials, Chapman and Hall, 1994, pp. 27–43 [Google Scholar]
  14. G. Brunner, S. Peter, On the solubility of glycerides and fatty acids in compressed gases in presence of an entrainer, Sep. Sci. and Tech. 17 (1982) 199–214 [CrossRef] [Google Scholar]
  15. J.A. Gearhart, L. Garwin, ROSE process improves resid feed, Hydrocarbon Process. 55 (1976) 125–128 [Google Scholar]
  16. R.E. Wilson, P.C. Keith, R.E. Haylett, 1936. Liquid propane: Use in dewaxing, deasphalting, and refining heavy oils, Ind. Eng. Chem. 28 (1936) 1065 [CrossRef] [Google Scholar]
  17. M. Mc Hugh, V. Krukonis, Supercritical extraction, Butterworth–Heinemann, 1994, pp. 189–284 [Google Scholar]
  18. L. van Ginneken, R. van de Leest, L. Willems, K. Elst, H. Weyten, Synthesis, characterisation and applications of silica aerogels, Proceedings of the 6th International Symposium on Supercritical Fluids, Versailles, 2003, pp. 1971–1976 [Google Scholar]
  19. J. Fages, A. Marty, C. Delga, J.S. Condoret, D. Combes, P. Frayssinet, Biomaterials 15 (1994) 650–656 [CrossRef] [PubMed] [Google Scholar]
  20. J. Fages, E. Jean, P. Frayssinet, D. Mathon, B. Poirier, A. Autefage, D. Larzul, Bone allografts and supercritical ProcessingFormula effects on osteointegration and viral safety, J. Supercritical Fluids 13 (1998) 351–356 [CrossRef] [Google Scholar]
  21. T. Chartier, F. Bordet, E. Delhomme, J.F. Baumard, Extraction of binders from green ceramic bodies by supercritical fluids: Influence of porosity, J. Europ. Ceramic Soc. 22 (2002) 1403–1409 [CrossRef] [Google Scholar]
  22. D. Lansberry, T.G. Council, Supercritical recirculating system for a precision inertial instrument cleaner, J. Cleaner Production 4 (1996) 133–134 [CrossRef] [Google Scholar]
  23. H. Wang, M. Hirahara, M. Goto, T. Tsutomu Hirose, Extraction of flame retardants from electronic printed circuit board by supercritical carbon dioxide, J. Supercritical Fluids (2003), sous presse [Google Scholar]
  24. S.B. Hawthorne, Y. Yang, D.J. Miller,, Extraction of organic pollutants from environmental solids with sub and supercritical, Water. Anal. Chem. 66 (1994) 2912–2920 [CrossRef] [Google Scholar]
  25. K. Ken Li, M. Michael Landriault, M. Merv Fingas, M. Maria Ljompart, Accelerated solvent extraction (ASE) of environmental organic compounds in soils using a modified supercritical fluid extractor, J. Hazardous Materials 102 (2003) 93–104 [CrossRef] [Google Scholar]
  26. R. John, J.R. Dean, G. Guohua Xiong, Extraction of organic pollutants from environmental matrices: Selection of extraction technique, Trends in Analytical Chemistry 19 (2000) 553–564 [CrossRef] [Google Scholar]
  27. E. Lack, T. Gamse, R. Marre, Separation operations and equipment, dans High Pressure Process Technology: Fundamentals and Applications, Elsevier, 2001, pp. 351–402 [Google Scholar]
  28. K.W. Hutchenson, Organic chemical reactions and catalysis in supercritical fluid media, dans Supercritical Fluid Technology in Materials Science and Engineering, M. Dekker (ed.), 2002, 87–188 [Google Scholar]
  29. M. Härröd, S. van den Hark, A. Holmqvist, P. Moller, Hydrogenation at supercritical single phase conditions, Proceedings of the 6th International Symposium on Supercritical Fluids, Versailles, 2003, pp. 1097–1102 [Google Scholar]
  30. C. Aymonier, C. Beslin, C. Jolivalt, F. Cansell, Hydrothermal oxidation of a nitrogen-containinig compound: The funuron, J. Supercritical Fluids 17 (2000) 45–54 [CrossRef] [Google Scholar]
  31. J.C. Meyer, P.A. Marone, J.W. Tester, Acetic acid oxidation and hydrolysis in supercritical water, AIChEJ. 41 (1995) 2108–2121 [CrossRef] [Google Scholar]
  32. A. Shanableh, Y. Shinuzu, Treatment of sewage sludge using hydrothermal oxidation technology application challenges, Water Sci. Technol. 41 (2000) 84–92 [Google Scholar]
  33. E. Fauvel, C. Joussot-Dubien, E. Pomier, P. Guichardon, G. Charbit, F. Charbit, S. Sarrade, Modeling of a porous reactor for supercritical water oxidation by a residence time distribution study, Ind. Eng. Chem. Res. 42 (2003) 2122–2130 [CrossRef] [Google Scholar]
  34. E. Fauvel, C. Joussot-Dubien, P. Guichardon, G. Charbit, F. Charbit, S. Sarrade, A double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube, J. Supercritical Fluids (2003), sous presse [Google Scholar]
  35. F. Graser, G. Wickenhaeuser, Conditioning of finely divided crude organic pigments. US Patent 4 451 654 (1982) [Google Scholar]
  36. P.M. Gallagher, M.P. Coffey, V.J. Krukonis, N. Klasutis, Gas antisolvent recrystallization: New process to recrystallize compounds insoluble in supercritical fluids dans Supercritical Fluid Science and Technology, ACS Symp. Ser. 406 (1989) 334–354 [CrossRef] [Google Scholar]
  37. S. Iversen, T. Tommy Larsen, O. Ole Henriksen, K. Felsvang, The world's first commercial supercritical wood treatment plant, Proceedings of the 6th International Symposium on Supercritical Fluids, Versailles, 2003, pp. 445–450 [Google Scholar]
  38. O. Guneya, A. Akgerman, Synthesis of controlled-release products in supercritical medium AIChE J. 48 (2002) 856–866 [Google Scholar]
  39. P. Alessi, A. Cortesi, I. Kikic, Effect of operating parameters on the impregnation of polymers with drugs, Proceedings of the 5th Meeting on Supercritical Fluids, Nice, 1998, pp. 373–378 [Google Scholar]
  40. C. Magnan, C. Bazan, F. Charbit, J. Joachim, G. Charbit, Impregnation of porous supports with active substances by means of supercritical fluids, dans High Pressure Chemical Engineering, P.R. Von Rohr, C. Trepp (ed.), 1996, pp. 509–514 [Google Scholar]
  41. W. Majewski, M. Perrut, On-line direct impregnation of natural extracts, Proceedings of the 7th Meeting on Supercritical Fluids, Antibes, 2000, pp. 779–780 [Google Scholar]
  42. M.R. De Giorgi, E. Cadoni, D. Maricca, A. Piras, Dyeing polyester fibres with disperse dyes in supercritical CO2, Dyes and Pigments 45 (2000) 75–79 [CrossRef] [Google Scholar]
  43. T. Ngo, C.L. Liotta, C.A. Eckert, S.G. Kazarian, Supercritical fluid impregnation of different azo-dyes into polymer: in situ UV/Vis spectroscopic study, J. Supercritical Fluids 27 (2003) 215–222 [CrossRef] [Google Scholar]
  44. E. Bach, E. Cleve, E. Schollmeyer, Treatment of textiles in supercritical CO2: New results, Proceedings of the 7th Meeting on Supercritical Fluids, Antibes, 2000, pp. 385–388 [Google Scholar]
  45. J.J. Shim, J.H. Choi, J.H. Ju, B.K. Son, J.M. Ahn, B.H. Kim, K.S. Kim, Dyeing of polyester, aramid, and polypropylene fibers in supercritical CO2, Proceedings of the 6th International Symposium on Supercritical fluids, Versailles, 2003, pp. 2101–2106 [Google Scholar]
  46. A. Tavana, A.D. Randolph, Manipulating solids CSD in a supercritical fluid crystallizer: CO2 – benzoïc acid, AIChE J. 35 (1989) 1625–1630 [CrossRef] [Google Scholar]
  47. C.J. Chang, A.D. Randolph, Precipitation of micronsize organic particles from supercritical fluids, AIChE J. 35 (989) 1876–1882 [Google Scholar]
  48. B. Helfegen, M. Türk, K. Schaber, Theoretical and experimental investigation of the micronization of organic solids by rapid expansion of supercritical solutions, Powder Technology 110 (2000) 22–28 [CrossRef] [Google Scholar]
  49. G. Pace, K. Mishra, B. Henriksen, V.J. Krukonis, A. Godinas, Processes to generate submicron particles of water – insoluble compounds, International Patent WO 99/65469, 1999 [Google Scholar]
  50. E. Reverchon, G. Della Porta, R. Taddeo, P. Pallado, A. Stassi, Solubility and micronization of griseofulvin in supercritical CHF3, Industrial and Engineering Chemistry Research 34 (1995) 4087–4091 [CrossRef] [Google Scholar]
  51. K.A. Larson, M.L. King, Evaluation of Supercritical Fluid Extraction in the Pharmaceutical Industry, Biotechnology Progress 2 (1986) 73–82 [CrossRef] [PubMed] [Google Scholar]
  52. J. Kim, T. Paxton, D. Tomasko, Microencapsulation of naproxen using rapid expansion of supercritical solutions, Biotechnology Progress 12 (1996) 650–661 [CrossRef] [Google Scholar]
  53. M.P. Coffey, V. Krukonis, Supercritical Fluid Nucleation, An improved Ultrafine Particle Formation Process, Phasex Corp., Final report to NSF, 1988 [Google Scholar]
  54. E. Reverchon, G. Donsi, D. Gorgoglione, Salicylic acid solubilization in supercritical CO2 and its micronization by RESS, J. Supercritical Fluids 6 (1993) 241–248 [CrossRef] [Google Scholar]
  55. F.E. Wubbolts, C. Kerach, G.M. Van Rosmalen, Semi batch precipitation of acetaminophen from ethanol with liquid carbon dioxide at a constant pressure, Proceedings of the 5th Meeting on Supercritical Fluids, Nice, 1, 1998, pp. 249–255 [Google Scholar]
  56. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, Filipovic-Grcic J., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterization, and in vitro dissolution, Int. J. Pharmaceutics 222 (2001) 129–138 [Google Scholar]
  57. S.D. Yeo, M.S. Kim, J.C. Lee, Recrystallization of sulfothiazole and chlorpropamide using the supercritical fluid antisolvent process, J. Supercritical Fluids 25 (2003) 143–154 [CrossRef] [Google Scholar]
  58. S.D. Yeo, G. Lim, Debenedetti P.G., Bernstein H., Formation of microparticulate protein powders using a supercritical fluid antisolvent, Biotechnology and Bioengineering 41 (1993) 341–346 [CrossRef] [PubMed] [Google Scholar]
  59. R. Thiering, D. Dehghani, A. Dillow, N.R. Foster, The influence of operating conditions on the dense gas precipitation of model proteins, J. Chem. Tech. Biotech. 75 (2000) 29–41 [CrossRef] [Google Scholar]
  60. M. Kitamura, M. Yamamoto, Y. Yoshinaga, H. Masuoka, Crystal size control of sulfathiazole using high pressure carbon dioxide, J. Crystal Growth 178 (1997) 378–386 [CrossRef] [Google Scholar]
  61. E. Reverchon, I. De Marco, C. Caputo, G. Della Porta, Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation, J. Supercritical Fluids 26 (2003) 1–7 [CrossRef] [Google Scholar]
  62. E. Reverchon, G. Della Porta, Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation, Powder Technology 106 (1999) 23–29 [CrossRef] [Google Scholar]
  63. S. Said, R.A. Rajewski, V. Stella, B. Subramanian, World Patent WO 9 731 691, 1997 [Google Scholar]
  64. L. Sze Tu, F. Dehghani, N.R. Foster, Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent, Powder Technology 126 (2002) 134–149 [CrossRef] [Google Scholar]
  65. E. Badens, C. Magnan, G. Charbit, Microparticles of soy lecithin formed by supercritical processes, Biotechnology and Bioengineering 72 (2001) 194–204 [CrossRef] [PubMed] [Google Scholar]
  66. C. Magnan, E. Badens, N. Commenges, G. Charbit, Soy lecithin micronization by precipitation with a compressed fluid antisolvent influence of process parameters, J. Supercritical Fluids 19 (2000) 69–77 [CrossRef] [Google Scholar]
  67. E. Reverchon, I. De Marco, G. Della Porta, Rifampicin microparticles production by supercritical antisolvent precipitation, Int. J. Pharmaceutics 243 (2002) 83–91. [CrossRef] [Google Scholar]
  68. M. Hanna, P. York, Particle formation method and their products, US Patent 2002/0073511 A1, 2002 [Google Scholar]
  69. M. Hanna, P. York, Method and apparatus for the formation of particles. European Patent WO 99/59710, 1999 [Google Scholar]
  70. R. Ghaderi, P. Artursson, J. Carlfors, A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluid, Europ. J. Pharmaceutical Sciences 10 (2000) 1–9 [CrossRef] [Google Scholar]
  71. R. Sloan, M.E. Hollowood, G.O. Humphreys, W. Ashraf, P. York, Supercritical Fluid Processing: preparation of stable protein particles. Proceedings of the 5th Meeting on Supercritical Fluids, Nice, 1998, pp. 301–306 [Google Scholar]
  72. M.H. Hanna, P. York, Method and apparatus for the formulation of particles. WO 96/00 610, 1996 [Google Scholar]
  73. M.H. Hanna, P. York, Method and apparatus for the formation of particles, European Patent WO 98/36825, 1998 [Google Scholar]
  74. J. Jung, M. Perrut, Particle design using supercritical fluids: Literature and patent survey, J. Supercritical Fluids 20 (2001) 179–219 [CrossRef] [Google Scholar]
  75. G. Charbit, E. Badens, O. Boutin, Methods of particle production, dans Drug Delivery and Supercritical Fluid Technology, Marcel Dekker (ed.), sous presse [Google Scholar]
  76. A. Bertucco, P. Pallado, L. Benedetti, Formation of biocompatible polymer microspheres for controlled drug delivery by a supercritical antisolvent technique, Proceedings of the 3rd Symposium on High Pressure Chemical Engineering, Zürich, 1996, pp. 217–222 [Google Scholar]
  77. P. Pallado, P.L. Benedetti, L. Callegaro, Nanospheres comprising a biocompatible polysaccharide, US Patent 6 214 384, 2001 [Google Scholar]
  78. N. Elvassore, A. Bertucco, P. Caliceti, Production of insulin-Ioaded poly(ethylene gIycol)/poly(lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques, J. Pharmaceutical Sciences 90 (2001) 1628–1636 [CrossRef] [Google Scholar]
  79. O.I. Corrigan, A.M. Crean, Comparative physicochemical properties of hydrocorisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and spray drying, Int. J. Pharmaceutics 245 (2002) 75–82 [CrossRef] [Google Scholar]
  80. C. Bitz, E. Doelker, Influence of the preparation method on residual solvents in biodegradable microspheres, Int. J. Pharmaceutics 131 (1996) 171–181 [CrossRef] [Google Scholar]
  81. S. Taki, E. Badens, G. Charbit, Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer, J. Supercritical Fluids 21 (2001) 61–70 [CrossRef] [Google Scholar]
  82. H. Lochard, E. Rodier, M. Sauceau, J.J. Letourneau, B. Freiss, C. Joussot-Dubien, J. Fages, A three step supercritical process to improve the dissolution rate of Eflucimibe, Proceedings of the 6th International Symposium on Supercritical Fluids, Versailles, 2003, pp. 1659–1664 [Google Scholar]
  83. M. Perrut, Supercritical fluids applications: Industrial developments and economic issues, Ind. Eng. Chem. 39 (2000) 4531–4535 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.