Open Access
Mécanique & Industries
Volume 7, Number 1, Janvier-Février 2006
Page(s) 29 - 37
Published online 10 May 2006
  1. T.R. Goodman, The heat balance integral and its application to problems involving a change of phase, Trans. ASME 80 (1958) 353–342 [Google Scholar]
  2. L.T. Yeh, B.T.F. Chung, Solidification and melting of material subjected to convection and radiation, J. Spacer. Rockets 12 (1975) 329–334 [CrossRef] [Google Scholar]
  3. B.A. Boley, The embedding technique in melting and solidification problems, moving boundary problems in heat flow and diffusion, in J. Ockendon, W. Hodgkins, ed., Proceedings of the conferences held at the University of Oxford, 1974, pp. 150–172 [Google Scholar]
  4. J. Crank, R. Gupta, Isotherm migration method in two dimensions, Int. J. Heat Mass Transfer 18 (1975) 1101–1117 [CrossRef] [Google Scholar]
  5. C.S. Keung, The Use of sources and sinks in solving two-dimensional heat conduction problems with change of phase in arbitrary domains, PhD dissertation, Columbia Univ. New York, 1980 [Google Scholar]
  6. A. Lazarids, A numerical solution of multidimensional solidification (or melting) problems, Int. Heat Mass Transfer 13 (1970) 1459–1477 [CrossRef] [Google Scholar]
  7. X.K. Lan, J.M. Khodadadi, Fluid flow, heat transfer and solidification in the mold of continuous casters during ladle change, Int. J. heat and mass Tran. 44 (2001) 953–965 [CrossRef] [Google Scholar]
  8. J.S. Hsiao, B.T.F. Chung, An efficient algorithm for finite element solution to two-dimensional heat transfer with melting and freezing, ASME paper 84-HT-2, presented at the 22d national heat transfer Conf., Niagara Falls, 1984 [Google Scholar]
  9. D. Lynch, K. O'Neil, Continuously deforming finite elements for the solution of parabolic problems with and without phase change, Int. J. Numer. Meth. Eng. 17 (1981) 81–96 [CrossRef] [Google Scholar]
  10. S.K. Das, Thermal modelling of D. C. continuous casting including sub-mould boiling heat transfer, Applied Thermal Engineering 19 (1999) 897–916 [CrossRef] [Google Scholar]
  11. N. Shamsundar, E. Sparrow, Analysis of multidimensional phase change via the enthalpy model, J. Heat Transfer, Trans. ASME 19 (1975) 333–340 [CrossRef] [Google Scholar]
  12. G. Comini, S. Guidice, R. Del Lewis, O. Zienkiewicz, Finite element solution of non-linear heat conduction problems with special reference to phase change, Int. J. Numer. Methods Eng. 8 (1974) 613–624 [CrossRef] [Google Scholar]
  13. M. Ruhul Amin, D. Greif, Conjugate heat transfer during two-phase solidification process in a continuously moving metal using average heat capacity method, Int. J. Heat Trans. 42 (1999) 2883–2895 [CrossRef] [Google Scholar]
  14. R.T. Lee, W.Y. Chiou, Finite element analysis of phase change problems using multilevel techniques, Numer. Heat Trans. Part B 27 (1995) 277–290 [CrossRef] [Google Scholar]
  15. J.S. Hsiao, An efficient algorithm for finite difference analyses of heat transfer with melting and solidification, Numer. Heat Trans. 8 (1985) 653–666 [Google Scholar]
  16. S.R. Runnels, G.F. Carey, Finite element simulation of phase change using capacitance methods, Numer. Heat Trans. 19 (1991) 13–30 [CrossRef] [Google Scholar]
  17. Y. Khadraoui, A.N. Korti, Z. Senouci, F.Y. Tabet-Hellal, M.A. Ghernaout, Simulation numérique du transfert thermique dans un métal en voie de solidification, J. Maghrébin de Physique 1 (2000) 57–60 [Google Scholar]
  18. D.C. Weckman, P. Niessen, A numerical simulation of the D. C. continuous casting process including nucleate boiling heat transfer, Metall. Trans. 13B (1982) 593–602 [Google Scholar]
  19. W.M. Rohsenow, Developments in heat transfer, MIT Press, Cambridge, 1964 [Google Scholar]
  20. W.M. Rohsenow, Modern developments in heat transfer, Academic Press, New York, 1963 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.