Open Access
Mécanique & Industries
Volume 7, Number 1, Janvier-Février 2006
Page(s) 1 - 11
Published online 10 May 2006
  1. R.O. Fehr, E.R. Parker, Measurement of dynamic stress and strain in tensile test specimens, Proceedings of the Society for Experimental Stress Analysis 1 (1943) 76–82 [Google Scholar]
  2. R.M. Davies, A critical study of the Hopkinson pressure bar, Phil. Trans. R. Soc. Lon. A 240 (1948) 375–457 [Google Scholar]
  3. R.F. Steidel, C.E. Makerov, The tensile properties of some engineering materials at moderate rates of strain, ASTM Bulletin 247 (1960) 57–64 [Google Scholar]
  4. J.E. Smith, Tension tests of metals at strain rates up to 200 s-1, Materials Research and Standards, 1963, pp. 713–718 [Google Scholar]
  5. P. Béguelin, Approche expérimentale du comportement mécanique des polymères en sollicitation rapide, Thèse, École polytechnique Fédérale de Lausanne, 1996 [Google Scholar]
  6. J. Fabis, Caractérisation expérimentale de la loi de comportement d'un acier en dynamique, Rapport Onera-Lille No. 97/63, 1997 [Google Scholar]
  7. U.S. Lindholm, R.L. Bessey, G.V. Smith, Effect of strain rate on yield strength, tensile strength, and elongation of three aluminum alloys, J. Mat. 6 (1971) 119–133 [Google Scholar]
  8. T. Nicholas, Dynamic tensile testing of structural materials using a split Hopkinson bar apparatus, Technical report, AFWAL TR 80-4053, 1980 [Google Scholar]
  9. I.H. Hove, B. Andersson, T.E. Johnsen, High speed tensile testing, J. Physique IV, C3, 1997, pp. 229–234 [Google Scholar]
  10. A. Mansilla, A. Regidor, D. Garcia, A. Negro, Dynamic tensile testing for determining the stress-strain curve at different strain rate, J. Physique IV 10 (2000) 695–700 [Google Scholar]
  11. M. Quik, K. Labibes, C. Albertini, T. Valentin, P. Magain, Dynamic mechanical properties of automotive thin sheet steel in tension, compression and shear, J. Physique IV, Colloque C3, Supplément au J. Physique III 24 (1997) 379–384 [Google Scholar]
  12. J. Fabis, Contribution à la caractérisation en dynamique rapide de lois de comportement de matériaux composites, Rapport Onera-Lille No. 99/40, 1999 [Google Scholar]
  13. J. Rodriguez, C. Navarro, V. Sanchez~Galvez, Numerical assessment of the dynamic tension test using the Split Hopkinson Bar, J. Testing and Evaluation, No. 4 22 (1994) 335–342 [Google Scholar]
  14. A. Rusinek, J.R. Klepaczko, Comportement viscoplastique des tôles en traction et cisaillement – Analyse de la vitesse d'impact, Matériaux & Techniques 11–12 (1999) 41–52 [Google Scholar]
  15. H. Zhao, Analyse de l'essai aux barres d'Hopkinson – Application à la mesure du comportement dynamique des matériaux, Thèse, École Nationale des Ponts et Chaussées, 1992 [Google Scholar]
  16. L. Rota, Application de méthodes inverses au dépouillement de l'essai aux barres de Hopkinson, Thèse, École polytechnique, 1997 [Google Scholar]
  17. H. Kolsky, Stress waves in solids, Dover Publications Inc., New York, 1963 [Google Scholar]
  18. G. Gary, Some aspects of dynamic testing with wave-guides, New experimental Methods in Material Dynamics and Impact, Warsaw 1, Poland, 2001, pp. 179–222 [Google Scholar]
  19. Y. Sato, H. Takeyama, The use of the split Hopkinson pressure bar to obtain dynamic stress/strain data at constant strain rates, Technology Reports, Tohoku University, No. 2 43 (1978) 303–315 [Google Scholar]
  20. U.S. Lindholm, L.M. Yeakley, Some experiments with the split Hopkinson pressure bar, Experimental Mechanics 12 (1964) 317–355 [Google Scholar]
  21. DYMAT, Présentation des essais dynamiques par barres d'Hopkinson, Document DYMAT ENSTA/DYMAT – M10 [Google Scholar]
  22. P. Mouro, G. Gary, H. Zhao, Dynamic tensile testing of sheet metal, J. Physique IV 10 (2000) 149–154 [Google Scholar]
  23. G. Gary, J.R. Klepaczko, A computer program for the analysis of the split Hopkinson bars test, Paris/Metz, 1988 [Google Scholar]
  24. G. Gary, J.R. Klepaczko, H. Zhao, Correction de dispersions pour l'analyse des petites déformations aux barres de Hopkinson, J. Physique IV 1 (1991) 403–410 [Google Scholar]
  25. M.M. Leblanc, D.H. Lassila, Dynamic tensile testing of sheet material using the Split Hopkinson Bar technique, Experimental Techniques 17 (1993) 37–42 [CrossRef] [Google Scholar]
  26. T. Yokoyama, T. Isomoto, Impact tension testing of sheet metals for automobile structural uses, Proceedings of Asian Pacific Conference for Fracture and Strength, 1996, 795–799 [Google Scholar]
  27. C.H. Nguyen, H.J. Schindler, On spurious reflection waves in Hopkinson bar tensile tests using a collar, J. Physique IV 7 (1997) 85–90 [Google Scholar]
  28. J. Harding, E.O. Wood, J.D. Campbell, Tensile testing of materials at impact rates of strain, J. Mechanical Engineering Science 2 (1960) 88–96 [Google Scholar]
  29. J.M. Yuan, V.P.W. Shim, Tensile response of ductile Formula –titanium at moderately high strain rates, Int. J. Solids and Structures 39 (2002) 213–224 [CrossRef] [Google Scholar]
  30. I.S. Chocron-Benloulo J. Rodriguez, M.A. Martinez, V. Sanchez Galvez, Dynamic tensile testing of aramid and polyethylene fiber composites, Int. J. Impact Engineering 19 (1997) 135–146 [Google Scholar]
  31. C. Kammerer, Modélisation du comportement plan d'un composite quasi-unidirectionnel en verre E/polyester sous faibles et fortes vitesses de déformation – Application au cas de l'impact, Thèse, Université de Paris XIII, 1996 [Google Scholar]
  32. D.D. Radford, M.J. Worswick, The mechanical and constitutive behaviour of as-received and irradiated Zr-2.5Nb pressure tube material under high rates of tensile strain, J. Physique IV (2000) 293–298 [Google Scholar]
  33. M.A. Kaiser, Advancements in the split Hopkinson bar test, Thesis of Mechanical Engineering, Faculty of the Virginia Polytechnic Institute, 1998 [Google Scholar]
  34. H. Eskandari, J.A. Nemes, Dynamic testing of composite laminates with a tensile split Hopkinson bar, J. Composites Materials 34 (2000) 260–273 [Google Scholar]
  35. B.P. Zhang, C. Ding, B. Liu, H. Lin, S.H. Zhou, Dynamic tensile behavior of 93Wt% tungsten alloy and its fractal features of fracture, J. Physique IV C3 (1997) 409–414 [Google Scholar]
  36. G. Haugou, J. Fabis, B. Langrand, E. Deletombe, E. Markiewicz, Iterative experimental/numerical procedure for improvement of dynamic experimental facilities, Conference of Structures under Shock and Impact, Montreal, Qc, Canada, 2002, pp. 113–122 [Google Scholar]
  37. H. Zhao, G. Gary, The testing and behaviour modelling of sheet metals at strain rates from 10-4 to 104 s-1, Materials Science and Engineering 207 (1996) 46–50 [Google Scholar]
  38. G. Gary, H. Zhao, Étude expérimentale du comportement dynamique des matériaux, Mécanique & Industries 1 (2000) 15–26 [CrossRef] [Google Scholar]
  39. G. Haugou, Moyens d'essais et de caractérisation de lois de comportement matérielles en dynamique moyennes vitesses, Thèse, Université de Valenciennes, 2003 [Google Scholar]
  40. M.N. Bussac, P. Collet, G. Gary, R. Othman, An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements – Application to elastic or viscoelastic bars, J. Mechanics and Physics of Solids 50 (2002) 321–350 [Google Scholar]
  41. R. Othman, Extension du champ d'application du système des barres de Hopkinson aux essais à moyennes vitesses de déformation, Thèse, École polytechnique, 2002 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.