Open Access
Mécanique & Industries
Volume 7, Number 3, Mai-Juin 2006
Page(s) 213 - 221
Published online 17 November 2006
  1. J.C. Masson, Évaluation par le calcul du comportement mécanique des structures navales, Proc. du 3e colloque en calcul des structures, Giens, Hermès, 1997 [Google Scholar]
  2. Bureau Veritas Rule for Steel ships (2000) [Google Scholar]
  3. T.T. Chau, F. Besnier, Numerical simulation of welding in shipbuilding, 5th Int. Conf. On Marine Technology and transportation, Szcezecin, Poland, 2003 [Google Scholar]
  4. M. Gérardin, D. Rixen, Théorie des vibrations, Masson, 1996 [Google Scholar]
  5. A. Ledoux, C. Mary, N. Couty, Modeling of springing and whipping of FPSOs in a time domain sea-keeping tool, Proc. ISOPE congress, Toulon, 2004 [Google Scholar]
  6. F. Besnier, G. Bechepay, Y. Mavrakakis, M. Ferry, Vibration Analysis Method of Ship Structures in the Medium Frequency Domain, Proc. 8th Int. Symp. PRADS 2001, Wu Y., Cui W. et Zhou G. (Eds.), Elsevier, Shangaï, China, Elsevier (2001) 1177–1184 [Google Scholar]
  7. F. Besnier, L. Jian, Fluid Structure Coupled Analyses in Shipbuilding Using Permas FS, Finite Element in Engineering Applications INTES GmbH, Heidelberg, Germany, 2002 [Google Scholar]
  8. C. De Jouëtte, O. Laget, J.M. Le Gouez, Vers la tenue à la mer par une formulation en fluide visqueux, Septièmes journées de l'hydrodynamique, Marseille, 1999 [Google Scholar]
  9. N. Couty, L. Jian, Tree dimensional simulation of slamming and whipping responses of a fast ship with finite element software, NAV2003 proceeding, Palermo, 2003 [Google Scholar]
  10. Det Norske Veritas, Fatigue assessment of ship structures, Classification notes N° 30.7, 2001 [Google Scholar]
  11. R.J. Bernhard, The family of EFA equations and their relationship to SEA, Proc. Int. Conf. Noise and Vibration Energy Methods, November 2000, France [Google Scholar]
  12. C. Cabos, H. Matthies, A method for the prediction of structure-borne noise propagation in ships, Proc. of the 6th International Congress on Sound and Vibration, Technical University of Denmark, 1999 [Google Scholar]
  13. E. Tukel, C. Farhat, U. Hetmaniuk, Improved Accuracy for Helmholz Equation in unbounded domains, Int. J. Numer. Meth. Engn, 59 (2004) 1963–1988 [Google Scholar]
  14. J.Y. Pradillon, T. Quesnel, C. Toderan, P. Rigo, Ultimate strength of longitudinally stiffened panels: multicriteria comparative analysis, Proc. 8th Int. Symp. PRADS 2001, Wu Y., Cui W. et Zhou G. (Ed.), Elsevier, Shanghai, China, Elsevier, 2001, pp. 1029–1035 [Google Scholar]
  15. J.K. Paik, A.K. Thayamballi, Ultimate strength of aging ships, J. Engineering for the maritime environment, 216 (2002) 57–77 [Google Scholar]
  16. F. Jancart, F. Besnier, Reliability Analysis of ship structures fatigue and ultimate strength, ASRANET Int. Coll., University of Glasgow, 2002 [Google Scholar]
  17. R. Donner, F. Besnier, H. Le Sourne, Numerical Simulation of Ship-Submarine Collisions, Proc. 8th Int. Symp. PRADS 2001, Wu Y., Cui W., Zhou G. (Eds.), Elsevier, Shangaï, China, Elsevier, 2001, pp. 1309–1314 [Google Scholar]
  18. S. Maherault, M. Huther, G. Parmentier, N. Recho, Semi probabilistic Fatigue calibration of the partial safety factor, IIW-Doc XIII, 1794–1799, Ins. Institute of welding, 1999 [Google Scholar]
  19. R.H. Lyon, G. DeJong, Theory and Aplications of Statistical Energy Analysis, Butterworth Heineman, Boston, 1985 [Google Scholar]
  20. Y. Ueda, S.M.H. Rashed, ISUM (Idealized Structural Unit Method) Applied to Marine Structures. Trans. JWRI 20 (1991) 123–136 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.