Open Access
Issue
Mécanique & Industries
Volume 8, Number 4, Juillet-Août 2007
Page(s) 379 - 389
DOI https://doi.org/10.1051/meca:2007060
Published online 13 November 2007
  1. A. Boulenger, C. Pachaud, Diagnostic vibratoire en maintenance préventive, Dunod, 1998 [Google Scholar]
  2. C. Pachaud, R. Salvetat, C. Fray, Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces, Mech. Syst. Signal Processing 11 (1997) 903–916 [Google Scholar]
  3. R.B.W. Heng, M.J. Nor, Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition, Applied Acoustics 53 (1998) 211–226 [CrossRef] [Google Scholar]
  4. J.P. Dron, F. Bolaers, L. Rasolofondraibe, Optimisation de la détection des défauts de roulements par débruitage des signaux par soustraction spectrale, Mécanique & Industries 4 (2003) 213–219 [CrossRef] [Google Scholar]
  5. J.P. Dron, F. Bolaers, L. Rasolofondraibe, Improvement of the sensitivity of the scalar indicators (crest factor and kurtosis) using a de-noising method by spectral subtraction: application to the detection of defects in ball bearings, J. Sound Vib. 270 (2004) 61–73 [Google Scholar]
  6. G.K. Chaturvedi, D.W. Thomas, Bearings faults detection using adaptive noise cancelling, J. Mechanical Design 104 (1982) 280–289 [CrossRef] [Google Scholar]
  7. Y. Shao, K. Nezu, Design of mixture de-noising for detecting faulty bearing signals, J. Sound Vibration 282 (2005) 899–917 [CrossRef] [Google Scholar]
  8. D.L. Donoho, De-noising by soft thresholding, IEEE Trans. Information Theory 41 (1995) 613–627 [Google Scholar]
  9. L. Jing, Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis, J. Sound Vib. 234 (2000) 35–148 [Google Scholar]
  10. W. Peter, Wavelets analysis-A flexible and efficient fault diagnostic method for rolling element bearing, 7th International Congress on Sound and Vibration, Germany, 4–7 July 2000, 507–514 [Google Scholar]
  11. Q. Sun, Y. Tang, Singularity analysis using continuous wavelet transform for bearing fault diagnosis, Mechanical Systems and Signal Processing 16 (2002) 1025–1041 [CrossRef] [Google Scholar]
  12. W.J. Wang, P.D. MacFadden, Application of wavelets to gearbox vibration signals for fault detection, J. Sound Vib. 192 (1996) 927–939 [Google Scholar]
  13. H. Zheng, Z. Li, X. Chen, Gear faults diagnosis based on continuous wavelet transform, Mechanical Systems and Signal Processing 16 (2002) 447–457 [Google Scholar]
  14. A. Yoshida, Y. Ohue, H. Ishikawa, Diagnosis of tooth surface failure by wavelet transform of dynamic characteristics, Tribology Int. 33 (2000) 273–279 [CrossRef] [Google Scholar]
  15. R. Rubini, U. Meneghetti, Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings, Mechanical Systems and Signal Processing 15 (2001) 287–302 [CrossRef] [Google Scholar]
  16. S. Brabhakar, A.R. Mohanty, A.S. Sekhar, Application of discrete wavelet transform for detection of ball bearings race faults, Tribology Int. 35 (2002) 793–800 [Google Scholar]
  17. A. Djebala, N. Ouelaa, N. Hamzaoui, S. Guenfoud, Détection précoce des défauts de roulements par analyse multirésolution en ondelettes, First International Congress Design and Modeling of Mechanical Systems, Tunisia 23–25 March 2005 [Google Scholar]
  18. K. Chinmaya, A.R. Mohanty, Monitoring gear vibrations through motor current signature analysis and wavelet transform, Mechanical Systems and Signal Processing 20 (2006) 158–187 [Google Scholar]
  19. C.K. Sung, H.M. Tai, C.W. Chen, Locating defects of gear system by the technique of wavelet transform, Mechanism Machine Theory 35 (2000) 1169–1182 [Google Scholar]
  20. N.G. Nikolaou, I.A. Antoniadis, Rolling element bearing fault diagnosis using wavelet packets, NDT & E Int. 35 (2002) 197–205 [CrossRef] [Google Scholar]
  21. E. Ericsson, N. Grip, E. Johansson, L.-E. Persson, R. Sjöberg, J.O. Strönberg, Towards automatic detection of local bearing defects in rotating machines, Mechanical Systems and Signal Processing 19 (2005) 509–535 [CrossRef] [Google Scholar]
  22. M. Boltezar, I. Simonovski, M. Furlan, Faults detection in DC electro motors using the continuous wavelet transform, Meccanica 38 (2003) 251–264 [CrossRef] [Google Scholar]
  23. D.M. Yang, A.F. Stronach, P. MacConnell, The application of advanced signal processing techniques to induction motor bearing condition diagnosis, Meccanica 38 (2003) 297–308 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.