Open Access
Issue
Mécanique & Industries
Volume 8, Number 6, Novembre-Décembre 2007
Page(s) 609 - 630
DOI https://doi.org/10.1051/meca:2007084
Published online 06 February 2008
  1. L. Chevalier, S. Cloupet, M. Quillien, Friction and wear during twin-disc experiments under ambient and cryogenic conditions, Trib. Inter. (2006) 1376–1387 [Google Scholar]
  2. L. Chevalier, H. Chollet, Endommagement des pistes de roulement, Mécanique & Industries 1 (2000) 77–103 [CrossRef] [Google Scholar]
  3. M. Quillien, R. Gras, L. Collongeat, Th. Kachler, A testing device for rolling-sliding behavior in harsh environments: the twin-disk cryotribometer, Trib. Int. 34 (2001) 287–292 [CrossRef] [Google Scholar]
  4. T. Ohyama, H. Maruyama, Traction and slip at higher rolling speeds: some experiments under dry friction and water lubrification, J. Japan Soc. Lubrication Eng. 21 (1976) 434–440 [Google Scholar]
  5. H. Chollet, Etude en similitude mécanique des efforts tangents au contact roue-rail, Thèse Paris-6, 1991 [Google Scholar]
  6. N. Fillot, I. Iordanoff, Y. Berthier, Simulation of wear through mass balance in dry contact, J. Trib. 127 (2005) 973–981 [Google Scholar]
  7. N. Fillot, I. Iordanoff, Y. Berthier, Modeling and the third body concept, Wear 262 (2007) 949–957 [CrossRef] [Google Scholar]
  8. N. Fillot, I. Iordanoff, Y. Berthier, Modelling third body flows with a discrete element method, a tool for understanding wear with adhesive particles, Trib. Int. 40 (2007) 973–981 [CrossRef] [Google Scholar]
  9. J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (1953) 981–988 [CrossRef] [Google Scholar]
  10. T. Jendel, Prediction of wheel profile wear-comparisons with field measurements, Wear 253 (2002) 89–99 [CrossRef] [Google Scholar]
  11. M.A. Moore, Abrasive wear, Materials in engenering applications 1 (1978) 97–111 [CrossRef] [Google Scholar]
  12. Zi-Li Li, J.J Kalker, Simulation of Severe Wheel-Rail Wear, Proceedings International Conference Computers in Railways, ed. WITPRESS, Southampton UK, 1998, 6, pp. 393–402. [Google Scholar]
  13. P. Põdra, S. Anderson, Wear calculations with the Winkler surface model, Wear 207 (1997) 79–85 [CrossRef] [Google Scholar]
  14. I.G. Goryacheva, P.T. Rajeev, T.N. Farris, Wear in Partial Slip Contact, J. Tribology 123 (2001) 848–856 [CrossRef] [Google Scholar]
  15. U. Olofsson, T. Telliskivi, Plastic deformation and friction of two rail steels, a full-scale test and a laboratory study, Wear 254 (2003) 80–93 [CrossRef] [Google Scholar]
  16. T. Telliskivi, Simulation of wear in a rolling–sliding contact by a semi-Winkler model and the Archard's wear law, Wear 256 (2004) 817–831 [CrossRef] [Google Scholar]
  17. R. Enblom, M. Berg, Simulation of railway wheel profile development due to wear, influence of disc braking and contact environment, Wear 258 (2005) 1055–1063 [CrossRef] [Google Scholar]
  18. N.H. Kim, D. Won, D. Burris, B. Holtkamp, G.R. Gessel, P. Swanson, W.G. Sawyer, Finite element analysis experiments of metal/metal wear in oscillatory contacts, Wear 258 (2005) 1787–1793 [CrossRef] [Google Scholar]
  19. J. Boussinesq, Application des potentiels à l'équilibre et du mouvement des solides élastiques, ed. Gauthier-Villars, Paris, 1885 [Google Scholar]
  20. P.J. Vermeulen, K.L. Johnson, Contact of non-spherical elastic bodies transmitting tangential forces, Trans. ASME J. Appl. Mech. 31 (1964) 338–340 [Google Scholar]
  21. E. Legrand, F. Robbe-Valloire, Analyse des efforts tangentiels dans les contacts billes-bagues non lubrifiés, Revue Française de Mécanique, Bulletin S.F.M. (1994) 93–102 [Google Scholar]
  22. F.W. Carter, On the action of a locomotive driving wheel, Proc. Royal Soc. London A112 (1926) 151–157 [Google Scholar]
  23. J.J. Kalker, The computation of three-dimensional rolling contact with dry friction, Int. J. Numer. Methods Eng. 14 (1979) 1293–1307 [CrossRef] [Google Scholar]
  24. J.J. Kalker, Wheel/rail wear calculations with the program CONTACT, Contact Mechanics and Wear of Rail/Wheel System 2 (1987) 3–26 [Google Scholar]
  25. J.J. Kalker, A Fast Algorithm for the Simplified Theory of Rolling Contact, Vehicle Syst. Dyn. 11 (1982) 1–13 [CrossRef] [Google Scholar]
  26. B. Jacobson, J.J. Kalker, Rolling Contact Phenomena: Linear Elasticity, CISM Lecture No. 411, Springer, Berlin, 2000 [Google Scholar]
  27. J. B. Ayasse, H.Chollet, Determination of the Wheel Rail Contact Patch in Semi-Hertzian Conditions, Veh. Syst. Dyn. 43 (2005) 161–172 (2005) [CrossRef] [Google Scholar]
  28. W. Kik, J. Piotrowski, A fast approximative method to calculate normal load at contact between wheel and rail, and creep forces during rolling, Proceedings of the 2nd mini-conference on contact mechanics and wear of rail/wheel systems, Budapest, Technical University of Budapest, 29–31 July, 1996, pp. 52–61 [Google Scholar]
  29. L. Chevalier, S. Cloupet, A. Eddhahak, Contributions à la modélisation simplifiée de la Mécanique des contacts roulants, Mécanique & Industries 7 (2006) 155–168 [CrossRef] [EDP Sciences] [Google Scholar]
  30. X. Quost, M. Sebes, A. Eddhahak-Ouni, J.B. Ayasse, H. Chollet, P.E. Gautier, F. Thouverez, Assessment of a semi-Hertzian method for determination of wheel-rail contact patch, Vehicle System Dynamics 44 (2006) 789–814 [CrossRef] [Google Scholar]
  31. B. Nayroles, G. Touzot, P. Villon, La méthode des éléments diffus, C. R. Acad. Sci. Paris, Ser. II 313 (1991) 133–138 [Google Scholar]
  32. E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957) 620–630; 108 (1957) 171–190 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  33. J.N. Kapur, H.K. Kesavan, Entropy optimisation principle with applications, ed. Academic Press, San Diego, 1992 [Google Scholar]
  34. L. Chevalier, S. Cloupet, C. Soize, Probabilistic approach for wear modelling in steady state rolling contact, Wear 258 (2005) 1543–1554 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.