Open Access
Issue
Mécanique & Industries
Volume 8, Number 6, Novembre-Décembre 2007
Page(s) 537 - 543
DOI https://doi.org/10.1051/meca:2007077
Published online 06 February 2008
  1. U. Essmann, H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Phil. Mag. A 171 (1979) 731–756 [Google Scholar]
  2. K. Dang Van, Introduction to fatigue analysis in mechanical design by the multiscale approach. High-Cycle fatigue in the context of mechanical design, CISM courses and lectures, 392, ed. K. Dang-Van and I.V. Papadopoulos, Springer-Verlag, 1999, pp. 1691–1710 [Google Scholar]
  3. G. Sines, J.L. Waisman, Metal fatigue. McGraw Hill, 1959 [Google Scholar]
  4. G. Sines, G. Ohgi, Fatigue criteria under combined stresses or strains, J. Engrg. Mat. Tech. 103 (1981) 82–90 [Google Scholar]
  5. B. Crossland, Effects of large hydrostatic pressures on tortional fatigue strength of an alloy steel, Proc. Int. Conf. Fatigue of Metals, Institution of Mechanical Engineers, London, 1956, pp. 138–149 [Google Scholar]
  6. E. Orowan, Theory of the fatigue of metals, Proc. Roy. Society, A, London, 40, 1939, pp. 78–106 [Google Scholar]
  7. K. Dang Van, Sur la résistance à la fatigue des métaux, Thèse de doctorat, Université Paris VI, 1973 [Google Scholar]
  8. I.V. Papadopoulos, Fatigue polycyclique des métaux : une nouvelle approche, Thèse de doctorat de l'ENPC, 1987 [Google Scholar]
  9. J.R. Rice, D.M. Tracey, On a ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids 17 (1969) 201–217 [Google Scholar]
  10. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I- yield criteria and flow rules for porous ductile media, J. Engrg. Mater. Technol. 99 (1977) 2–15 [Google Scholar]
  11. J.B. Leblond, G. Perrin, J. Devaux, An improved Gurson-type model for hardenable ductile metals, Eur. J. Mech. A/Solids 14 (1995) 499–527 [Google Scholar]
  12. E. Kröner, Zur plastichen verformung des vielkristalls, Acta Metall. 99 (1961) 155–161 [Google Scholar]
  13. I.V. Papadopoulos, Exploring the high-cycle fatigue behaviour of metals from the mesoscopic scale, J. Mech. Behav. Mat. 6 (1996) 93–118 [CrossRef] [Google Scholar]
  14. V. Monchiet, Contributions à la modélisation micromécanique de l'endommagement et de la fatigue des métaux ductiles, Thèse de doctorat de l'université de Lille I, 2006 [Google Scholar]
  15. M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en mécanique des matériaux, Tome 2, Comportements non linéaires et problèmes ouverts, Hermes Science (2001) [Google Scholar]
  16. H.J. Gough, H.V. Pollard, The strength of metals under combined alternating stress, Proc. Inst. Mech. Engrg. 131 (1935) 3–18 [Google Scholar]
  17. V. Monchiet, E. Charkaluk, D. Kondo, A plasticity-damage based micromechanical modelling in high cycle fatigue, C.R. Mécanique 334 (2006) 129–136 [CrossRef] [Google Scholar]
  18. P. Davoli, A. Bernasconi, M. Filippini, S. Foletti, I.V. Papadopoulos, Independence of the torsional fatigue limit upon a mean shear stress, Int. J. Fatigue 25 (2003) 471–480 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.