Open Access
Issue
Mécanique & Industries
Volume 9, Number 1, Janvier-Février 2008
Page(s) 71 - 79
DOI https://doi.org/10.1051/meca:2008009
Published online 17 May 2008
  1. M. Abidat, Design and testing of a highly loaded mixed flow turbine, Ph.D. Thesis, Imperial College, London, 1991 [Google Scholar]
  2. M. Abidat, H. Chen, N.C. Baines, M.R. Firth, Design of a Highly loaded mixed flow turbine, Proc., IMechE, J. Power Energy 206 (1992) 95–107 [Google Scholar]
  3. M. Abidat, M. Hachemi, M. K. Hamidou, N.C. Baines, Prediction of the steady and non-steady flow performance of a highly loaded mixed flow turbine, Proc., IMechE, J. Power Energy 212 (1998) 173–184 [Google Scholar]
  4. C. Arcoumanis, I. Hakeem, R.F. Martinez-Botas, L. Khezzar, N.C. Baines, Performance of a Mixed Flow Turbocharger Turbine under Pulsating Flow Conditions, ASME, Paper 95-GT-210 [Google Scholar]
  5. H. Chen, I. Hakeem, R.F. Martinez-Botas, Modelling of a turbocharger turbine under pulsating inlet conditions, Proc., IMechE, J. Power Energy 210 (1996) 397–408 [Google Scholar]
  6. N. Karamanis, R.F. Martinez-Botas, C.C. Su, Mixed flow turbines: Inlet and exit flow under steady and pulsating conditions, ASME, J. Turbomachinery 123 (2001) 359–371 [CrossRef] [Google Scholar]
  7. F.S. Bhinder, P.S. Gulati, A method for predicting the performance of centripetal turbines in non-steady flow, IMechE (1978) [Google Scholar]
  8. V. Gabette, Ph. San Emeterio, Ph. Arques, Influence d'un écoulement pulsé sur les caractéristiques de fonctionnement d'une turbine de suralimentation de moteur thermique, Mécanique Materiaux Electricité n° 394-395 octobre/novembre 1982 [Google Scholar]
  9. A. Dale, N. Watson, Vaneless Radial Turbocharger Turbine Performance, IMechE 1986, C110/86 [Google Scholar]
  10. H. Chen, D.E. Winterbone, A method to predict performance of vaneless radial turbines under steady and unsteady flow conditions, IMechE (1990) [Google Scholar]
  11. A. Hammoud, Q.C. Duan, J. Julien, Étude de la validité de l'hypothèse de quasi-stationnarité appliquée au fonctionnement d'une turbine de suralimentation en régime pulsé, Entropie 174/175 (1993) [Google Scholar]
  12. P. Bradshaw, T. Cebeci, J.H. Whitelaw, Engineering calculation methods for turbulent flow, Academic Press, London, 1981 [Google Scholar]
  13. S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 15 (1972) 1778–1806 [Google Scholar]
  14. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA-J. 32 (1994) [Google Scholar]
  15. C.M. Rhie, W.L.A. Chow, Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation, AIAA J. 21 (1982) [Google Scholar]
  16. CFX5 Solver Theory, 2004 [Google Scholar]
  17. C.A. Rodgers, Cycle analysis technique for small gas turbines, Technical advances in gas turbine design, Proc. IMechE 183 (1969) [Google Scholar]
  18. H.E. Rohlik, Analytical determination of radial-inflow turbine design geometry for maximum efficiency, NASA TN D-4384 (1968) [Google Scholar]
  19. H. Chen, N.C. Baines, M. Abidat, Exit traverse study of mixed-flow turbines with inlet incidence variation, Proc. Inst. Mech. Engrs. 211 (1997) 461–475 [CrossRef] [Google Scholar]
  20. D. Palfreyman, R.F. Martinez-Botas, The pulsating flow field in a mixed flow turbocharger turbine: an experimental and computational study, Trans. ASME J. Turbomachinary 127 (2005) 144–155 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.