Open Access
Issue
Mécanique & Industries
Volume 9, Number 2, Mars-Avril 2008
Page(s) 167 - 174
DOI https://doi.org/10.1051/meca:2008022
Published online 09 July 2008
  1. T. Menouillard, R.J. Rethoré, A. Combescure, H. Bung, Efficient explicit time stepping for the extended finite element method (X-FEM), Int. J. Num. Meth. Eng. 68 (2006) 911–939 [CrossRef] [Google Scholar]
  2. A. Kolke, A. Legay, Enriched space time integration for fluid structure interaction: Part II, Thin flexible structures, Proc. 3rd European conference on computational mechanics, 5–6 June 2006, Lisbon [Google Scholar]
  3. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, MNRAS 181 (1977) 375–382 [Google Scholar]
  4. J.P. Gray, J. Monaghan, SPH elastic dynamics, Computer Meth. Appl. Mech. Eng. 190 (2001) 6641–6662 [Google Scholar]
  5. T. Belytschko, Y. Guo, W.K. Liu, S.P. Xiao, A unified stability analysis of meshless particle methods, Int. J Num. Meth. Eng. 40 (2000) 1359–1400 [Google Scholar]
  6. T. Belytschko, T. Rabczuk, S.P. Xiao, Stable particle methods based on Lagrangian kernels, Comp. Meth. Appl. Mech. Eng. 193 (2005) 1035–1063 [Google Scholar]
  7. T. Rabczuk, P.M.A. Areias, T. Belytschko, A meshfree method for non-linear dynamic fracture, Int. J. Num. Meth. Eng., in press [Google Scholar]
  8. T. Rabczuk, T. Belytchko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Num. Meth. Eng. 61 (2004) 2316–2343 [CrossRef] [Google Scholar]
  9. Johnson, Beissel, SPH for high velocity impact computations, Comp. Meth. Appl. Mech. Eng. 139 (1996) 347–373 [Google Scholar]
  10. B. Maurel, Modélisation numérique de la rupture de réservoirs remplis de fluide par la méthode SPH couplée fluide coque, Thèse INSA, Lyon, 24 janvier 2008 [Google Scholar]
  11. P. Betsch, A. Menzel, E. Stein, On the parametrization of finite rotations in computational mechanics, Comp. Meth. Appl. Mech. Eng. 155 (1998) 273–305 [CrossRef] [Google Scholar]
  12. A.A. Ilyushin, Plasticité, Eyrolles, 1956 [Google Scholar]
  13. Q. Zeng, A. Combescure, F. Arnaudeau, An efficient plasticity algorithm for shell elements application to metal forming simulations, Comp. Struct. 79 (2001) 1525–1540 [CrossRef] [Google Scholar]
  14. T. Belytschko, M.O. Neal, Contact-Impact by the Pinball method with penalty and Lagrangian Methods, Int. J. Num. Meth. Eng. 31 (1991) 547–572 [Google Scholar]
  15. F. Casadei, A General Impact-Contact Algorithm based on hierarchic pin balls for the EUROPLEXUS software system, technical note No. 265, CCR ISPRA, Sept. 2003 [Google Scholar]
  16. R.M. Mc Neal, R.L. Harder, A proposed standard set of problems to test finite element accuracy, Finite Element Analysis Design 1 (1985) 3–20 [CrossRef] [Google Scholar]
  17. T. Belytschko, P. Krysl, Analysis of thin shells by the EFG Method, Int. J. Solids Struct. 33 (2002) 3057–3080 [Google Scholar]
  18. S. Potapov, B. Maurel, A. Combescure, Using SPH method to model fluid structure interaction in fast transient dynamics, Proc. ECCOMAS Thematic conference on computational methods in structural dynamics and seismic engineering, 13–16 June 2007, ed. M. Papadrakakis, D.C. Charmpis, N.D. Lagaros, Y. Tsompanakis, Rethymno, Crete, Greece [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.