Open Access
Issue
Mécanique & Industries
Volume 9, Number 3, Mai-Juin 2008
Page(s) 237 - 251
DOI https://doi.org/10.1051/meca:2008030
Published online 12 July 2008
  1. C. Arcoumanis, A.F. Bicen, J.H. Whitelaw, Measurement in a motored four stroke reciprocating model engine, J. Fluids Eng. 104 (1982) 104–235 [Google Scholar]
  2. K.Y. Kang, R.D. Reitz, Intake flow structure and swirl generation in a four-valve Diesel engine, Spring Technical Conference, ASME 1999, 32-2. Paper No. 99-ICE-182, (1999) [Google Scholar]
  3. P. Snauwaert, R. Sierens, Experimental study of the swirl motion in direct injection Diesel engines under steady state flow conditions, SAE 860026, 1986 [Google Scholar]
  4. G. Tippelmann, A new method of investigation of swirl ports, SAE 770404, 1977 [Google Scholar]
  5. J. Gazeaux, D.G. Thomas, Caractérisation du mouvement de rotation de l'air en écoulement stationnaire dans un mono-cylindre Diesel en fonction des conditions d'admission, Entropie 234 (2001) 13–19 [Google Scholar]
  6. J.-E. Yun, New evaluation indices for bulk motion of in-cylinder flow trough intake port system in cylinder head, Proc. ImechE, Part D: J. Automobile Eng. 216 (2002) 513–S21 [CrossRef] [Google Scholar]
  7. J.B. Heywood, Fluid motion within the cylinder of internal combustion engines, ASME J. Fluids Eng. 109 (1987) 3–35 [Google Scholar]
  8. A. Ekchian, D.P. Hoult, Flow visualization study of the intake process of an internal combustion engine, SAE paper 790095, Warrendale, PA, USA, 1979 [Google Scholar]
  9. T. Hirotimi, I. Nagayama, S. Kobayashi, T. Yamamasu, Study of induction swirl in a spark ignition engine, SAE paper 810496, Warrendale, PA, USA, 1981 [Google Scholar]
  10. C. Arcoumanis, A.F. Bicen, N.S. Vlachos, J.H. Whitelaw, Effects of flow and geometry boundary conditions on fluid motion in a motored IC model engine, Proc. Institution Mech. Eng., 196, 1982, pp. 1–10 [Google Scholar]
  11. T. Liou, D.A. Saltavicca, Cycle resolved LDV measurements in a motored IC engine, ASME J. Fluids Eng. 107 (1985) 232–240 [CrossRef] [Google Scholar]
  12. S. Nadarajah, S. Balabani, M.J. Tindal, M. Yianneskis, The effect of swirl on the annular flow past an axisymmetric poppet valve, Proc. Institution Mech. Eng., Part C, 212, 1998, pp. 473–484 [Google Scholar]
  13. M. Raffer, C.E. Willert, J. Kompenhans, Particle Image Velocimetry – A Practical Guide, Springer, Berlin, 1998 [Google Scholar]
  14. R. Adrian, Particle-imaging techniques for experimental fluid mechanics, Annual Rev. Fluid Mech. 23 (1991) 261–304 [Google Scholar]
  15. B. Khalighi, Study of the intake tumble motion by flow visualization and particle tracking velocimetry, Exp. Fluids 10 (1991) 230–236 [Google Scholar]
  16. J. Lee, P.V. Farrel, Intake valve flow measurements of an IC engine using particle image velocimetry, SAE paper 930480, Warrendale, PA, USA, 1993 [Google Scholar]
  17. G. Valentino, D. Kaufman, P.V. Farrel, Intake valve flow measurement using PIV, SAE paper 932700, Warrendale, PA, USA, 1993 [Google Scholar]
  18. E. Rouland, A. Floch, A. Ahmed, D. Dionnet, M. Trinite, Characterization of intake generated tumble flow in 4-valve engine using cross-correlation particle image velocimetry, Proc. Eighth International Symposium on Flow Visualization, 1998, pp. 195.1–195.15 [Google Scholar]
  19. R.F. Huang, C.W. Huang, H.S. Yang, T.W. Lin, W.Y. Hsu, Topological flow evolutions in cylinder of motored engine during intake and compression strokes, J. Fluids Struct. 20 (2005) 105–127 [CrossRef] [Google Scholar]
  20. A.D. Gosman, Y.Y. Tsui, A.P. Watkins, Calculation of three dimensional air motion in model engines, SAE 840229, 1984 [Google Scholar]
  21. T. Wakisaka, Y. Shimamoto, Y. Issihiki, Three-dimensional numerical analysis of in- cylinder flows in reciprogating engines, SAE 860464, 1986 [Google Scholar]
  22. W. Brandstätter, R.J.R. Johns, G. Wigley, The effect of inlet port geometry on in- cylinder flow structure, SAE 850499, 1985 [Google Scholar]
  23. H. Schapertons, F. Thiele, Three dimensional computations for flowfields in DI piston bowls, SAE 860464, 1986 [Google Scholar]
  24. T. Wakisaka, Y. Shimamoto,Y. Issihiki, Three-dimensional numerical analysis of in-cylinder flows in reciprogating engines, SAE 860464, 1986 [Google Scholar]
  25. S. Aita, A. Tabbal, G. Munk, N. Monmayeur, Y. Takenka, Y. Aoyagi et al., Numerical simulation of swirling port-valve-cylinder flow in Diesel engine, SAE 910263, 1991 [Google Scholar]
  26. S. Raghay, A. Hakim, Simulation numérique d'un écoulement dans un moteur alternatif, Entropie 206 (1997) 33–42 [Google Scholar]
  27. A. Giovanni, F. Karaginnis, Caractérisation des grosses structures rotationnelles de l'écoulement dans le cylindre du moteur alternatif par la méthode des tourbillons aléatoires, Entropie 139 (1988) 48–58 [Google Scholar]
  28. Y. Mao, M. Buffat, D. Jeandel, Simulation of the turbulent flow inside the combustion chamber of a reciprocating engine with a finite element method, J. Fluid Eng. 116 (1994) 363–369 [CrossRef] [Google Scholar]
  29. A. Chen, A. Veshagh, S. Wallace, Intake flow predictions of a transparent DI Diesel engine, SAE 981020, 1998 [Google Scholar]
  30. B. Dillies, A. Ducamin, L. Lebrere, F. Neveu, Direct injection Diesel engine simulation: a combined numerical and experimental approach fro aerodynamics to combustion, SAE 970880, 1997 [Google Scholar]
  31. I. Celik, I. Yavuz, A. Smirnov, Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review, Int. J. Engine Res. 2 (2001) 119–148 [CrossRef] [Google Scholar]
  32. F. Payri, J. Benajes, X. Margot, A. Gil, CFD modeling of the in-cylinder flow in direct-injection Diesel engines, Comp. Fluids 33 (2004) 995–1021 [CrossRef] [Google Scholar]
  33. S. Gounand, Rapport DMT/97/, CEA/Saclay [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.