Open Access
Issue |
Mécanique & Industries
Volume 9, Number 3, Mai-Juin 2008
|
|
---|---|---|
Page(s) | 205 - 212 | |
DOI | https://doi.org/10.1051/meca:2008026 | |
Published online | 12 July 2008 |
- J.C. Laprie, Guide de la sûreté de fonctionnement, Cépaduès, 1995 [Google Scholar]
- R. Isermann, Model-based fault-detection and diagnosis-status and applications, Ann. Rev. Control 29 (2005) 71–85 [Google Scholar]
- M. Bartys, R. Patton, M. Syfert, S. Heras, J. Quevedo, Introduction to the damadics actuator fdi benchmark study, Control Eng. Practice 14 (2006) 577–596 [CrossRef] [Google Scholar]
- F. Noureddine, Fault tolerance in robots, in AVCS'04, IFAC Genova, 2004 [Google Scholar]
- H.B Jun, D. Kiritsis, M. Gambera, P. Xirouchakis, Predictive algorithm to determine the suitable time to change automotive engine oil, Computer Ind. Eng. Elsevier 51 (2006) 671–683 [Google Scholar]
- C. Fu, L. Ye, Y. Liu, R. Yu, B. Iung, Y. Cheng, Y. Zeng, Predictive maintenance in intelligent-control-maintenance-management system for hydroelectric generating unit, IEEE Transactions on Energy Conversion 19 (2004) 179–186 [CrossRef] [Google Scholar]
- M.C. Garcia, M.A. Sanz-Bobi, J. Del Pico, Simap: System for predictive maintenance-application to the health condition monitoring of a windturbine gearbox, Computers Ind. 57 (2006) 552–568 [CrossRef] [Google Scholar]
- M.C. Pan, H.V. Brussel, P. Sas, Intelligent joint fault diagnosis of industrial robots, Mech. Syst. Signal Proc. 12 (1998) 571–588 [CrossRef] [Google Scholar]
- E. Gilabert, A. Arnaiz, Intelligent automation systems for predictive maintenance: A case study, Robotics and Computer-integrated Manufacturing 22 (2006) 543–549 [CrossRef] [Google Scholar]
- D. Bansal, D.J. Evans, B. Jones, Application of a real-time predictive maintenance system to a production machine system, Int. J. Machine Tools Manufacture 45 (2005) 1210–1221 [CrossRef] [Google Scholar]
- D. Bansal, D.J. Evans, B. Jones, Bjest: A reverse algorithm for the real-time predictive maintenance system, Int. J. Machine Tools Manufacture 46 (2006) 1068–1078 [CrossRef] [Google Scholar]
- N. Orhan, S. Aktürk, V. Celik, Vibration monitoring for defect of rolling element bearings as a predictive maintenance tool: Comprehensive case studies, NDTE Int. 39 (2006) 293–298 [Google Scholar]
- S. Velarde-Suarez, R. Ballesteros-Tajadura, J.P. Hurtado-Cruz, A predictive maintenance procedure using pressure and acceleration signals from a centrifugal fan, Appl. Acoustic 67 (2006) 49–61 [CrossRef] [Google Scholar]
- F. Noureddine, Conception d'un outil logiciel graphique pour l'analyse comportementale d'un robot en mode dégradé, Revue Internationale de CFAO et d'Informatique Graphique 11 (1996) 199–214 [Google Scholar]
- R.J. Murry, B.F. Mitchell, Cost saving from a practical predictive maintenance program, in Annual Reliability and Maintainability Symposium, 1994, pp. 206–209 [Google Scholar]
- M. Crowder, J. Lawless, On a scheme for predictive maintenance, Eur. J. Operational Res. 176 (2007) 1713–1722 [CrossRef] [Google Scholar]
- M.C. Eti, S.O.T. Ogaji, S.D. Probert, Reducing the cost of preventive maintenance (pm) through adopting a proactive reliability-focused culture, Applied Energy 83 (2006) 1235–1248 [CrossRef] [Google Scholar]
- L.M. Maillart, S.M. Pollock, Cost-optimal condition-monitoring for predictive maintenance of 2-phase systems, IEEE Trans. on Reliability 51 (2002) 322–330 [CrossRef] [Google Scholar]
- A. Grall, L. Dieulle, C. Bérenguer, M. Roussignol, Continous-time predictive-maintenance scheduling for a deteriorating system, IEEE Trans. Reliability 51 (2002) 141–150 [CrossRef] [Google Scholar]
- M.C. Carnero, Selection of diagnostic techniques and instrumentation in a predictive maintenance program, a case study, Decision Support System 91 (2003) 945–963 [Google Scholar]
- M.C. Carnero, An evaluation system of the setting up of predictive maintenance programmes, Reliability Engineering and System Safety, 2006 [Google Scholar]
- L.R. Contreras, C. Modi, A. Pennathur, Integrating simulation modeling and equipment condition diagnostics for predictive maintenance strategies, A case study, in Winter Simulation Conference (2002) pp. 1289–1294 [Google Scholar]
- L. Lu, J. Jiang, Analysis of on-line maintenance strategies for k-out-of-n standby safety systems, Reliability Engineering and System Safety 92 (2007) 144–155 [CrossRef] [Google Scholar]
- X. Zhou, L. Xi, J. Lee, Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation, Reliability Engineering and System Safety 92 (2007) 530–534 [Google Scholar]
- Z.S. Abazi, Z. Bouredji, Monitoring and predictive maintenance: Modeling and analyse of fault latency, Comp. Ind. 57 (2006) 504–515 [CrossRef] [Google Scholar]
- F. Ly, A.K.A. Toguyeni, E. Craye, Indirect predictive monitoring in flexible manufacturing systems, Robotics and Computer-integrated Manufacturing 16 (2000) 321–338 [CrossRef] [Google Scholar]
- D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models, Materials Proc. Tech. 127 (2002) 325–335 [Google Scholar]
- S.A. Coker, Y.C. Shin, In-process control of surface roughness with tool wear via ultrasonic sensing, in American Control Conference Washington, 1996 [Google Scholar]
- A.M. Alam, R. Chieragatti, M. Akamatsu, Y. Caumel, Effect of machining procedures on the surface state of a low carbon steel, Scr. Mat. 37 (1997) 1559–1567 [CrossRef] [Google Scholar]
- R. Noureddine, A. Benamar, F. Noureddine, Intégration d'une technique de maintenance prédictive de l'outil de coupe dans une cellule d'usinage robotisée, in PENTOM 2005, Marrakech, 2005 [Google Scholar]
- A. Benamar, G. Inglebert, M. Boumahrat, Durée de vie d'un carbure p20 pour le chariotage d'un acier c38 à rugosité contrôlée, Mécanique & Industries 6 (2005) 635–640 [CrossRef] [EDP Sciences] [Google Scholar]
- M. Bouchetara, A. Guermat, K. Belaib, Étude du phénomène d'usure des pièces des pompes d'injection par la méthode taguchi, Mécanique & Industries 4 (2003) 221–228 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.