Open Access
Issue
Mécanique & Industries
Volume 9, Number 5, Septembre-Octobre 2008
Page(s) 459 - 468
DOI https://doi.org/10.1051/meca/2009009
Published online 14 March 2009
  1. C. Pachaud, Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces, Mech. Sys. Sig. Pro. 11 (1997) 903–916 [Google Scholar]
  2. J. Mathiew, R.J. Alfredson, The condition monitoring of rolling element bearings using vibration analysis, Trans ASME, J. Vibr. Acoust. Stress Reliab Design 106 (1984) 447–453 [Google Scholar]
  3. P.D. McFadden, J.D. Smith, Vibration monitoring of rolling element bearings by the high frequency resonance technique, Tribol. Int. 17 (1984) 3–10 [Google Scholar]
  4. P.Y. Kim, A review of rolling element bearing health monitoring (II): preliminary test results on current technologies, In Proceedings of Machinery Vibration Monitoring and Analysis Meeting, Vibration Institute, New Orleans, (1984), pp. 127–137 [Google Scholar]
  5. N. Tandon, A comparison of some vibration parameters for the condition monitoring of rolling element bearings, Measurement 12 (1994) 285–289 [CrossRef] [Google Scholar]
  6. A. Boullenger, C. Pachaud, Diagnostic vibratoire en maintenance préventive, Dunod, 1998 [Google Scholar]
  7. D. Ho, R.B. Randall, Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals, Mech. Syst. Sig. Proc. 14 (2000) 763–788 [CrossRef] [Google Scholar]
  8. Campagna-Varenne, Étude des roulements par analyse spectrale, Vibrations actualités 3 (1985) [Google Scholar]
  9. A. Shahina, B. Yegnanarayana, Language identification in noisy environments using throat microphone signals, IEEE, 2005 [Google Scholar]
  10. J.F. Holzrichter, Speech articulor and user gesture measurements using micropower, Interferometric EM-Sensors, IEEE, 2001 [Google Scholar]
  11. B. Widrow, J. Glover, J.M. Mccool, J. Kaunitz, C. Williams, Adaptive noise cancelling: Principles and Applications Proceedings of the IEEE 63 (1975) [Google Scholar]
  12. R. Xu, Z. Ren, W. Dai, D. Lao, C. Kwan, Multimodal speech enhancement in noisy environment, IEEE, 2004 [Google Scholar]
  13. F. Hlawatsch, F. Auger, Temps-fréquence : outils et concepts Livre traitement du signal et de l'image, Lavoisier, 2005 [Google Scholar]
  14. R. Ranta, V. Louis-Dorr, C. Heinrich, D. Wolf, F. Guillemin. Débruitage par ondelettes et segmentation de signaux non stationnaires. Traitement du signal, 20 (2003) 119–134 [Google Scholar]
  15. R. Coifman, M. Wickerhauser. Adapted waveform de-noising for medical signals et images. IEEE Engineering in Medicine and Biomogy. Magazine 14 (1995) 578–586 [Google Scholar]
  16. R. Coifman, M. Wickerhauser, Experiments with Adapted Wavelet De-Noising for Medical Signals and Images, ed. M. Akay, Time-Frequency and Wavelets in Biomed. Eng. (1998) 323–346 [Google Scholar]
  17. S. Mallat. A wavelet tour of signal processing, Academic Press, 1999 [Google Scholar]
  18. D. Donoho, De-Noising via Soft Thresholding, Technical report, Department of Statistics, Stanford University, 1992 [Google Scholar]
  19. D. Donoho, I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika 81 (1954) 425–455 [Google Scholar]
  20. J.B. Allen, L.R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proceedings of the IEEE 65 (1977) 1558–1564 [Google Scholar]
  21. J.B. Boll, Suppression of acoustic noise in speech using spectral subtraction, IEEE Trans. On Acoustics, Speech and signal processing 27 (1979) [Google Scholar]
  22. L. Cai, C. Vincent, Débruitage de signaux chocs par soustraction spectrale du bruit, Mécanique Industrielle et Matériaux 47 (1994) 320–332 [Google Scholar]
  23. J.P. Dron, F. Bolaers, L. Rasolofondraibe, Improvement of the sensibility of scalars indicators thanks to de-noising method by spectacle subtraction, Application to the detection ball bearing defects. J. Sound and Vib. S. 270 (2004) 61–73 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.