Open Access
Mécanique & Industries
Volume 9, Number 6, Novembre-Décembre 2008
Page(s) 543 - 550
Published online 16 May 2009
  1. R.H. Cole, Underwater explosions, Princeton University Press, 1948 [Google Scholar]
  2. J.H. Haywood, Response of elastic cylindrical shell to pressure pulse, J. Mech. Appl. Math. 11 (1958) 126–141 [Google Scholar]
  3. S.C. Tang, D.H.Y. Yen, Interaction of a plane acoustic wave with an elastic spherical shell, J. Acoustical Soc. Amer. 47 (1970) 1325–1233 [Google Scholar]
  4. H. Huang, Transient interaction of plane acoustic wave with a spherical elastic shell, J. Acoustical Soc. Amer. 45 (1979) 661–670 [CrossRef] [Google Scholar]
  5. T.L. Geers, C.L. Yen, Inelastic response of an infinite cylindrical shell to transient acoustic waves, J. Appl. Mech. 56 (1989) 900–909 [CrossRef] [Google Scholar]
  6. Y.W. Kwon, P.K. Fox, Underwater shock response of a cylinder subjected to side-on explosion, Computers & Structures 48 (1993) 637–646 [Google Scholar]
  7. Y.S. Shin, D.T. Hooker, Damage response of submerged imperfect cylindrical structures to underwater explosion, Computers & Structures 60 (1995) 683–693 [Google Scholar]
  8. C.C. Liang, C.Y. Hsu, W.H. Lai, A Study of transient response of a submerged spherical shell under shock waves, Ocean Eng. 28 (2000) 71–94 [CrossRef] [Google Scholar]
  9. A.H. Keil, The Response of ships to underwater explosions, Trans. Soc. Naval Architects Marine Eng. 69 (1961) 33–410 [Google Scholar]
  10. I.K. Park, J.C. Kim, C.W. An, D.S. Cho, Measurement of naval ship response to underwater explosion shock loading, Shock Vibration 10 (2003) 365–377 [Google Scholar]
  11. J.A. DeRuntz, The underwater shock analysis code and its applications, 60th Shock and Vibration Symposium, Virginia Beach, 14–16 November 1989 [Google Scholar]
  12. H.U. Mair, Review: hydrocodes for structural response to underwater explosion. Shock Vibration 6 (1999) 81–96 [Google Scholar]
  13. Y.W. Kwon, R.E. Cunningham, Comparison of USA-DYNA finite element models for a stiffened shell subjected to underwater shock, Computers & Structures 66 (1998) 127–144 [Google Scholar]
  14. H. Huang, Y.F. Wang, Early-times interaction of a spherical acoustic waves and cylindrical elastic shell, J. Acoustical Soc. Amer. 50 (1971) 885–891 [CrossRef] [Google Scholar]
  15. H. Huang, Y.F. Wang, Asymptotic fluid-structure interaction theories for acoustic radiation prediction, J. Acoustical Soc. Amer. 77 (1985) 1389–1394 [Google Scholar]
  16. T.L. Geers, Residual potential and approximation methods for three-dimensional fluid-structure interaction problems, J. Acoustical Soc. Amer. 49 (1971) 1505–1510 [Google Scholar]
  17. T.L. Geers, C.A. Felippa, Doubly asymptotic approximations for vibration analysis of submerged structures, J. Acoustical Soc. Amer. 73 (1983) 1152–1159 [Google Scholar]
  18. G. Chertock, The Transient flexural vibrations of ship-like structures exposed to underwater explosions, J. Acoustical Soc. Amer. 48 (1970) 170–180 [CrossRef] [Google Scholar]
  19. Y.S. Shin, J.E. Chisum, Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach, Shock Vibration 4 (1997) 1–10 [Google Scholar]
  20. Y.S. Shin, L.D. Santiago, Surface ship shock modeling and simulation: two-dimensional analysis, Shock Vibration 5 (1998) 129–137 [Google Scholar]
  21. Y. Le Bras, D. Vienne, Underwater explosion response of an SSK, UDT Conference, Amsterdam, 22 June 2005 [Google Scholar]
  22. C.C. Liang, Y.S. Tai, Shock response of surface ship subjected to noncontact underwater explosions, Ocean Eng. 33 (2006) 748–772 [Google Scholar]
  23. F. Besnier, Simulation numérique et conception des structures de grands navires, Mécanique & Industries 7 (2006) 213–222 [CrossRef] [EDP Sciences] [Google Scholar]
  24. S. Iakovlev, External shock loading on a submerged fluid-filled cylindrical shell, J. Fluids Structures 22 (2006) 997–1028 [Google Scholar]
  25. S. Iakovlev, Submerged fluid-filled cylindrical shell subjected to a shock wave: fluid-structure interaction effects, J. Fluids Structures 23 (2007) 117–142 [Google Scholar]
  26. A. Pearson, J.R. Blake, A.R. Otto, Jets in bubble, J. Eng. Math. 48 (2004) 391–412 [CrossRef] [Google Scholar]
  27. D. Drikakis, D. Ofengeim, E. Timofeev, P. Voionovich, Computation of non stationary shock wave/cylinder interaction using adaptive grid methods, J. Fluids Structures 11 (1997) 665–691 [CrossRef] [Google Scholar]
  28. M.A. Sprague, T.L. Geers, A spectral element/finite element analysis of a ship like structure subjected to an underwater explosion, Computer methods in applied, Mechanics Eng. 195 (2006) 2149–2167 [Google Scholar]
  29. F. Axisa, Modélisation des systèmes mécaniques, Hermès, 2001 [Google Scholar]
  30. C. Leblond, Modélisation de phénomènes fortement instationnaires en milieu couplé, Application au dimensionnement de structures immergées aux explosions sous-marines, Thèse de doctorat, Université de Nantes, 6 décembre 2007 [Google Scholar]
  31. L. Brancik, Utilization of Matlab in simulation of linear hybrid circuits, Radioengineering 12 (2003) 6–11 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.