Open Access
Issue |
Mécanique & Industries
Volume 10, Number 3-4, Mai-Août 2009
19e Congrès français de mécanique (CFM 2009)
|
|
---|---|---|
Page(s) | 285 - 290 | |
DOI | https://doi.org/10.1051/meca/2009058 | |
Published online | 05 August 2009 |
- S. Kumar, I.Z. Maxwell, A. Heisterkamp, T.R. Polte, T. Lele, M. Salanga, E. Mazur, D.E. Ingber, Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization and extracellular matrix mechanics, Biophys. J. 90 (2006) 3762–3773 [CrossRef] [PubMed] [Google Scholar]
- B. Fabry, G. Maksym, J.P. Butler, M. Glogauer, D. Navajas, J.J. Fredberg, Scaling the microrheology of living cells. Phys. Rev. Lett. 87 (2001) 148102 [Google Scholar]
- V.M. Laurent, R. Fodil, P. Cañadas, S. Fereol, B. Louis, E. Planus, D. Isabey, Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. Biomed. Eng. 31 (2003) 1263–1278 [Google Scholar]
- M. Puig-de-Morales, E.J. Millet, B. Fabry, D. Navajas, N. Wang, J.P. Butler, J.J. Fredberg, Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am. J. Physiol.: Cell Phys. 287 (2004) 643–654 [Google Scholar]
- A.K. Harris, R. Wild, and D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science 208 (1980) 177–179 [CrossRef] [PubMed] [Google Scholar]
- D. Stamenovic, S. Mijailovic, I. Tolic-Norrelykke, J. Chen, N. Wang, Cell pre-stress II. Contribution of microtubules. Am. J. Cell Physiol. 282 (2002) 617–624 [Google Scholar]
- C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173 (2006) 733–741 [Google Scholar]
- D. Stamenovic, M.F. Coughlin, The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J. Theor. Biol. 201 (1999) 63–74 [Google Scholar]
- P. Cañadas, V.M. Laurent, P. Chabrand, D. Isabey, and S. Wendling-Mansuy, Mechanisms Governing the Visco-Elastic Responses of Living Cells Assessed by Foam and Tensegrity Models, Med. Biol. Eng. Comput. 416 (2003) 733–739 [Google Scholar]
- D. Stamenovic, D.E. Ingber, N. Wang, and J.J. Fredberg, A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity, J. Theor. Biol. 181 (1996) 125–136 [CrossRef] [PubMed] [Google Scholar]
- S. Wendling, C. Oddou, and D. Isabey, Stiffening Response of a Cellular Tensegrity Model, J. Theor. Biol. 1963 (1999) 309–325 [CrossRef] [PubMed] [Google Scholar]
- D.E., Ingber, Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton, J. Cell Sci., 104 (1993) 613–627 [Google Scholar]
- N. Wang, K. Naruse, D. Stamenovic, J.J. Fredberg, S.M. Mijailovich, I.M. Tolic-Norrelykke, T. Polte, R. Mannix, D.E. Ingber, Mechanical behavior in living cells consistent with the tensegrity model, Proceedings of the National Academy of Sciences of the USA 98, Vol. 14 (2001) 7765–7770 [Google Scholar]
- S. Wendling, P. Cañadas, C. Oddou, and A. Meunier, Interrelations between elastic energy and strain in a tensegrity model; contribution to the analysis on the mechanical response in living cells, Comput. Methods Biomech. Biomed. Eng. 5 (2002) 1–6 [Google Scholar]
- S. Wendling, P. Cañadas, and P. Chabrand, Toward a generalized tensegrity model describing the mechanical behaviour of the cytoskeleton structure, Cornput. Methods Biornech. Biorned. Eng. 1 (2003) 1–8 [Google Scholar]
- C. Sultan, D. Stamenovic, D.E. Ingber, A computational tensegrity model predicts dynamic rheological behaviors in living cells, Annals Biomed. Eng. 32 (2004) 520–530 [CrossRef] [Google Scholar]
- P. Cañadas, V.M. Laurent, C. Oddou, D. Isabey, and S. Wendling, A Cellular Tensegrity Model to Analyse the Structural Viscoelasticity of the Cytoskeleton, J. Theor. Biol. 218 (2002) 155–173 [CrossRef] [PubMed] [Google Scholar]
- P. Cañadas, S. Wendling-Mansuy, D. Isabey, Frequency response of a viscoelastic trensegrity structure: structural rearrangement contribution to cell dynamics, ASME J. Biomech. Eng. 128 (2006) 487–495 [CrossRef] [Google Scholar]
- L. Zhang, B. Maurin, R. Motro, Form-finding of non regular tensegrity systems, Journal of Structural Engineering 132 (2006) 1435–1440 [CrossRef] [Google Scholar]
- H. Baudriller, B. Maurin, P. Cañadas, P. Montcourrier, A. Parmeggiani, N. Bettache, Form-finding of complex tensegrity structures application to cell cytoskeleton modelling Comptes Rendus de l'Académie des Sciences Mécanique 334 (2006) 662–668 [Google Scholar]
- J.L. Milan, S. Wendling-Mansuy, M. Jean, P. Chabrand, Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation, Biomechan. Model Mechanobiol. 6 (2007) 373–390 [CrossRef] [Google Scholar]
- B. Maurin, P. Cañadas, H. Baudriller, P. Montcourrier, N. Bettache. Mechanical model of cytoskeleton structuration during cell adhesion and spreading, Journal of Biomechanics 41 (2008) 2036–2041 [CrossRef] [PubMed] [Google Scholar]
- TJ. Keating, J.G. Peloquin, V.I. Rodionov, D. Momcilovic, G.G. Borisy, Microtubule release from de centrosome, Proceedings of the National Academy of Sciences of the USA 94 (1997) 5078–5083 [Google Scholar]
- L. Sanchez-Sandoval, B. Maurin, M.N. Kazi Aoual, R. Motro, Selfstress states identification and localization in modular tensegrity grids, International Journal of Space Structures 22 (2007) 215–224 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.