Open Access
Issue
Mécanique & Industries
Volume 10, Number 3-4, Mai-Août 2009
19e Congrès français de mécanique (CFM 2009)
Page(s) 231 - 237
DOI https://doi.org/10.1051/meca/2009062
Published online 05 August 2009
  1. G.P. Purohit, V.K. Dhir, Subcooled film-boiling heat transfer from spheres, Nuclear Engineering and Design 47 (1978) 49–66 [Google Scholar]
  2. O.C. Iloeje, A study of Wall Rewett and Heat Transfer in Dispersed Vertical Flow, Ph.D. Thesis, Massachusetts Inst. Technology, 1975 [Google Scholar]
  3. F.G. Collins, B.N. Antar, Flow boiling during quench in low gravity environment, Microgravity science and technology, 1997 [Google Scholar]
  4. J.A. Bromley, Heat transfer in stable film boiling, Chemical Engineering Progress, 1950 [Google Scholar]
  5. B.P. Breen, Effect of diameter of horizontal tubes on film boiling, Chemical Engineering Progress 58 (1962) 67 [Google Scholar]
  6. J.A. Bromley, Heat transfer in forced convection film boiling, Industrial Engineering Chemistry 45 (1953) 2639–2646 [CrossRef] [Google Scholar]
  7. P.J. Berenson, Film boiling heat transfer from a horizontal surface, J. Heat Transfer C 83 (1961) 351–356 [Google Scholar]
  8. G.E. Dix, J.E. Leonard, K.H. Sun, Solar and nuclear heat transfer, AIChE Symp. Ser. (73/164) (1977) 7 [Google Scholar]
  9. J.A. Clark, T.H.K. Frederking, Natural convection film boiling on a sphere, Advanced Cryogenic Engineering 8 (1962) 501–506 [Google Scholar]
  10. I. Shai, Y. Barnea, E. Elias, Flow heat transfer regimes during quenching of hot surfaces, Int. J. Heat Mass Transfer 37 (1994) 114–1453 [Google Scholar]
  11. S.C. Cheng, N. Hammouda, D.C. Groeneveld, Two fluid modeling of inverted annular film boiling, Int. J. Heat Mass Transfer 40 (1997) 2655–2670 [CrossRef] [Google Scholar]
  12. B.N. Antar, C.J. Westbye, M. Kawaji, Boiling heat transfer in the quenching of a hot tube under microgravity, J. Thermophys. Heat Transfer 9 (1995) [Google Scholar]
  13. H. Otha, O. Kawanami, H. Azuma, Effect of gravity on cryogenic boiling heat transfer during tube quenching, Int. J. Heat Mass Transfer 50 (2007) 3490–3497 [CrossRef] [Google Scholar]
  14. J.J. Xu, Flow boiling heat transfer in the quenching of a hot surface under reduced gravity conditions, Ph.D. Thesis, University of Toronto, 1998 [Google Scholar]
  15. M. Kawaji, Boiling heat transfer during quenching under microgravity, American Inst, Aeronautics Astronautics, 1996 [Google Scholar]
  16. M. Silbergberg, C.F. Bampus, A.Norman, P. Spiegler, J. Hopenfeld, Onset of stable film boiling, and the foam limit, Int. J. Heat Mass Transfer 6 (1963) 987–989 [Google Scholar]
  17. J.G. Collier, Heat transfer in the post burnout region and during quenching and reflooding, Handbook of Multiphase Systems, chapter VI, Hemisphère Publishing Corporation, 1982 [Google Scholar]
  18. F.F. Simon, K.J. Baumeister, Leidenfrost temperature – its correlation for liquid metals, cryogens, hydrocarbons and water, J. Heat Transfer 95 (1973) 166–173 [CrossRef] [Google Scholar]
  19. B. Panella, M. De Salve, Thermal-hydraulics of the precursory cooling during bottom reflooding, Multi-phase flow and heat transfer symposium-workshop, 1983 [Google Scholar]
  20. J.J. Carbajo, A study on the rewetting temperature, Nuclear Engineering and Design 84 21–52 (1985) [Google Scholar]
  21. Y. Zimmels, M. Ben David, Y. Zvirin, Determination of the quench velocity and rewetting temperature of hot surfaces: formulation of a nonisothermal microscale hydrodynamic model, Phys. Rev. APS 59 (1999) 6687–6698 [Google Scholar]
  22. J.N. Chung, K. Yuan, Y. Ji, Cryogenic chill down process under low flow rates, Int. J. Heat Mass Transfer 50 (2007) 4011–4022 [CrossRef] [Google Scholar]
  23. M. Kawaji, K. Adham-Khodaparast, J.J. Xu, Flow film boiling collapse and surface rewetting in normal and reduced gravity conditions, Int. J. Heat Mass Transfer 38 (1995) 2749–2760 [CrossRef] [Google Scholar]
  24. G. Zummo, G.P. Celata, M. Cumo, Quenching experiments at reduced gravity, Invited Lecture, 3rd Intern. Symposium on Physical Sciences in Space, 2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.