Open Access
Issue
Mécanique & Industries
Volume 10, Number 6, Novembre-Décembre 2009
Page(s) 503 - 518
DOI https://doi.org/10.1051/meca/2010009
Published online 24 February 2010
  1. E.D. Mielnieck, Metal working science and engineering, Mc Graw-Hill, Inc, 1991 [Google Scholar]
  2. K. Saanouni, J.-L. Chaboche, Computational damage mechanics: application to metal forming, Chap. 7, Vol. 3, Numerical and computational methods, I. Miline, R.-O. Ritchie, B. Karihalo (Eds.), ISBN 0-08-043749-4, Elsevier Oxford 2003, pp. 3211–376 [Google Scholar]
  3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I, Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech. 99 (1997) [Google Scholar]
  4. G. Cailletaud, Une approche micromécanique phénoménologique du comportement inélastique des métaux, Thèse de Docteur d’Etat, Université Paris VI, 1987 [Google Scholar]
  5. A. Zaoui, Comportement global des polycristaux, Passage du polycristal au monocristal, Phys. et mécanique de la mise en forme des métaux, Presse du CNRS IRSID, 337, 1990 [Google Scholar]
  6. D. François, A. Pineau A. Zaoui, Comportement Mécanique des Matériaux. Endommagement, Mécanique de la Rupture, Mécanique de contact, Vol. 2 Hermes, 1993 [Google Scholar]
  7. J. Lemaitre, A continuum damage mechanics model for ductile fracture, J. Eng. Mat. Tech. 107 (1985) 83–89 [Google Scholar]
  8. P. Germain, Q.-S. NguyenP. Suquet, A Continuum thermodynamics, J. Eng. Mech. 50 (1983) 1010–1020 [Google Scholar]
  9. J.-R. RiceD.-M. Tracy, On the enlargement of voids in triaxial stress field, J. Mech. Phys. 17 (1969) 201–217 [Google Scholar]
  10. G. Pijaudier-CabotZ.P. Bazant, Nonlocal damage theory, J. Engrg. Mech. 113 (1987) 1512–1533 [CrossRef] [Google Scholar]
  11. R. Becker, A. Needleman, O. RichmondG. Tvergaard, Void growth and failure in notched bars, J. Mech. Phys. 36 (1988) 317–351 [Google Scholar]
  12. V. Tvergaard, Material failure by void growth to coalescence, J. Adv. Appl. Mech 27 (1990) 83–151 [Google Scholar]
  13. J.-L. ChabocheContinuum damage mechanics, Part I & II, J. Applied Mechanics 55 (1988) 59–72 [Google Scholar]
  14. L.M. Kachanov, Time of the rupture process under creep conditions, Z.v, Akad, Nauk. SSR 8 (1958) 26 [Google Scholar]
  15. I.M. Pereiraa, G. Rubimb, O. AcselradcP.R. Cetlin, Comparison of the experimental and the numerically predicted mechanical damage in the sheet forming of steel, J. Mater. Proc. Tech. 203 (2008) 13–18 [CrossRef] [Google Scholar]
  16. J.C. Gelin, Modelling of damage in metal forming processes J. Mat. Processing Tech. 80–81 (1998) 24–32 [CrossRef] [Google Scholar]
  17. P. Teixeira, A.-D. Santos, F.M. Andrade Pires, J.-M.-A.C. Santos, Finite element prediction of ductile fracture in sheet metal forming processes, J. Mat. Processing Tech. 177 (2006) 278–281 [Google Scholar]
  18. A. Cherouat, K. SaanouniY. Hammi, Numerical improvement of thin tubes hydroforming with respect to ductile damage, I. J. Mech. Sci. 44 (2002) 2427–2446 [Google Scholar]
  19. R. Hill, A theory of yielding and plastic flow of anisotropic metals, Royal Soc. London Proc. (1948) 281 [Google Scholar]
  20. N. Siva, P. Varma, R. Narasimhan, A.A. LuoA.K. Sachdev, An analysis of localized necking in aluminium alloy tubes during hydroforming using a continuum damage model, I. J. Mech. Sci. 49 (2007) 200–209 [CrossRef] [Google Scholar]
  21. F.M. Andrade Pires, E.A. de Souza NetoD.R.J. Owen, On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials, Computer Methods in Applied Mechanics and Engineering 193 (2004) 5223–5256 [CrossRef] [Google Scholar]
  22. A. Imad, On the ductile fracture based on the continuum damage in a steel case, Mécanique & Industries 3 (2002) 45–50 [CrossRef] [Google Scholar]
  23. ABAQUS, Theory Manual, Version 6.7, Hibbit, Karson & Sorensen, 2008 [Google Scholar]
  24. M. Khelifa, M. Oudjene, Numerical damage prediction in deep-drawing of sheet metals, J. Mater. Processing Tech. (2008) 1–76 [Google Scholar]
  25. M. Ayadi, H. CherouatM.A. Rezgui, N. Mezghani, Experimental and numerical studies of welded tube formability. J. Mat. Sci. Forum 614 (2009) 129–134 [CrossRef] [Google Scholar]
  26. N. Mezghani, H. Salhi, M. Ayadi, A. Cherouat, Experimental and numerical simulation of hydroforming process, Int. Rev. Mech. Eng. 2N6 (2008) 839–844 [Google Scholar]
  27. MATLAB Users Manual, The Mathworks Inc., 2007 [Google Scholar]
  28. Simon Ho, Yung-Li Lee, Hong-Tae KangCheng J. Wang, Optimization of a crankshaft rolling process for durability, Int. J. Fatigue 31 (2009) 799–808 [CrossRef] [Google Scholar]
  29. Jiromaru Tsujino, Kazuaki Hidai, Atsushi Hasegawa, Ryoichi Kanai, Hisanori Matsuura, Kaoru Matsushima, Tetsugi Ueoka, Ultrasonic butt welding of aluminium, aluminium alloy and stainless steel plate specimens Ultrasonics 40 (2002) 371–374 [CrossRef] [PubMed] [Google Scholar]
  30. L. Giraud-Moreau, H. Borouchaki, A. Cherouat, A Remeshing Procedure for Numerical Simulation of Forming Processes in Three Dimensions, New York, Springer ISBN 3-540-34957-X, 2006 127–143 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.