Open Access
Issue
Mécanique & Industries
Volume 11, Number 3-4, Mai-Août 2010
Giens 2009
Page(s) 203 - 208
DOI https://doi.org/10.1051/meca/2010036
Published online 20 October 2010
  1. L. Gibson, M. Ashby, Cellular solids: structure and properties, 2nd Edition, Cambridge University press, 1997 [Google Scholar]
  2. D.W. Brands, Predicting brain mechanics during closed head impact – numerical and constitutive aspects, Thèse, Université de Eindhoven, 2002 [Google Scholar]
  3. F.S. Raul, Applications des modèles éléments finis de la tête en médecine légale, Thèse, Université Louis Pasteur, Strasbourg I, 2007 [Google Scholar]
  4. E. Charpails, Analyse du comportement mécanique des côtes humaines en dynamique, Thèse, École Nationale Supérieure d’Arts et Métiers de Paris, 2006 [Google Scholar]
  5. C.H. Turner, DB. Bur – Basic biomechanical measurements of bone: a tutorial, Bone 14 (1993) 595–606 [PubMed] [Google Scholar]
  6. F. Linde, I. Hvid, F. Madsen, The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens, J. Biomech. 25 (1992) 359–368 [PubMed] [Google Scholar]
  7. R. Van-Rietbergen, H. Weinans, R. Huiskes, A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical, J. Biomech. 28 (1995) 69–81 [PubMed] [Google Scholar]
  8. G. van Lenthe, M. Stauber, R. Müller, Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties, Bone 39 (2006) 1182–1189 [PubMed] [Google Scholar]
  9. J. Mc Elhaney, J. Fogle, J. Melvin, R. Haynes, V. Roberts, N. Alem, Mechanical properties of cranial bone, J. Biomech. 3 (1970) 495–511 [PubMed] [Google Scholar]
  10. J. Halgrin, F. Chaari, E. Markiewicz, P. Drazetic, Spongy bone mechanical behaviour under quasi static to dynamic loadings : development of an equivalent physical model, Modelling of heterogeneous materials, Prague, Juin 2007 [Google Scholar]
  11. I. Parkinson, A. Badiei, NL. Fazzalari, Effect of variability in image segmentation on quantitative parameters from Micro-CT analysis of human Cancellous bone skyscan user meeeting, 2009, pp. 29–30 [Google Scholar]
  12. N. Otsu, A threshold selection method from grey scale histogram, IEEE Trans. Syst. Man Cyber 1 (1979) 62–66 [Google Scholar]
  13. F. Chaari, E. Markiewicz, P. Drazetic, Identification of the spongy bone mechanical behaviour under compression loads: numerical simulation versus experimental results, Int. J. Crashworthiness, 12 (2007) 101–108 [Google Scholar]
  14. F. Chaari, J. Halgrin, E. Markiewicz, P. Drazetic, Spongy bone deformation mechanisms: experimental and numerical studies, Eur. J. Comp. Mech. 18 (2009) 67–79 [Google Scholar]
  15. J. Halgrin, Influence des paramètres architecturaux sur le comportement mécanique de l’os trabéculaire, Thèse, Université de Valenciennes et du Hainaut-Cambrésis, 2009 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.