Open Access
Issue
Mécanique & Industries
Volume 11, Number 5, Septembre-Octobre 2010
Page(s) 379 - 384
DOI https://doi.org/10.1051/meca/2010066
Published online 24 December 2010
  1. M. Goto, Statistical investigation of the behaviour of small cracks and fatigue life in carbon steels with different ferrite grain sizes, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 635–649 [CrossRef] [Google Scholar]
  2. H. Kimura, Y. Akiniwa, K. Tanaka, Y. Tahara, T. Ishikawa, Fatigue Crack Initiation Behavior in Ultrafine-Grained Steel Observed by AFM and EBSP, JSME Int. J. Ser. A 47 (2004) 331–340 [CrossRef] [Google Scholar]
  3. A. Elmalki Alaoui, D. Thevenet, A. Zeghloul, Experimental investigations on the growth of small fatigue cracks in naval steel, Fatigue Fract. Eng. Mater. Struct. 30 (2007) 489–498 [CrossRef] [Google Scholar]
  4. Y. Hong, L. Zheng, Y. Qiao, Simulation and experiments of stochastic characteristics for collective short fatigue cracks in steels, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 459–466 [CrossRef] [Google Scholar]
  5. Y. Qiao, Effects of randomness of grain boundary resistance on fatigue initiation life, Int. J. Fatigue 27 (2005) 1251–1254 [CrossRef] [Google Scholar]
  6. C.M. Suh, J.J. Lee and G.Kang, Fatigue microcraks in type 304 stainless steel at elevated temperature, Fatigue Fract. Eng. Struct. 13 (1990) 487–496 [CrossRef] [Google Scholar]
  7. K. Obrtlik, J. Polak, M. Hajek, A. Vasek, Short fatigue crack behaviour in 316L stainless steel, Int. J. Fatigue 19 (1997) 471–475 [CrossRef] [Google Scholar]
  8. S. Beretta, P. Clerici, Microcrack propagation and microstructural parameters of fatigue damage, Fatigue Fract. Eng. Mater. Struct. 19 (1996) 1107–1115 [CrossRef] [Google Scholar]
  9. C.A. Rodopoulos, E.R. de los Rios, Theoretical analysis of the behaviour of short fatigue cracks, Int. J. Fatigue 24 (2002) 719–724 [CrossRef] [Google Scholar]
  10. M. Yamamoto, T. Kitamura, Effect of microstructure on crack propagation in high-temperature fatigue of directionally solidified Ni-based superalloy, Fatigue Fract. Eng. Mater. Struct. 29 (2006) 431–439 [CrossRef] [Google Scholar]
  11. T. Zhai, X.P. Jiang, J.X. Li, M.D. Garatt, G.H. Bray, The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys, Int. J. Fatigue 27 (2005) 1202–1209 [Google Scholar]
  12. Y. Gao, J.S. Stolken, M. Kumar, R.O. Ritchie, High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character, Acta Materialia 55 (2007) 3155–3167 [CrossRef] [Google Scholar]
  13. Y. Murakami, K.J. Miller, What is fatigue damage? A view point from the observation of low cycle fatigue process, Int. J. Fatigue 27 (2005) 991–1005 [Google Scholar]
  14. Y. Hong, L. Zheng, Y. Qiao, Simulation and experiments of stochastic characteristics for collective short fatigue cracks in steels, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 459–466 [CrossRef] [Google Scholar]
  15. P.V. Yasniy, V.B. Hlado, V.B. Hutsaylyuk, T. Vuherer, Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue Fract. Eng. Mater. Struct. 28 (2005) 391–397 [CrossRef] [Google Scholar]
  16. A. Beloucif, J. Stolarz, Low cycle fatigue of zircaloy-4, Proceeding of the sixth international fatigue congress, Berlin Germany, Fatigue’96 (1996) 277-282 [Google Scholar]
  17. C.M. Suh, J.J. Lee, Y.G. Kang, H.J. Ahn, B.C. Woo, A simulation of the fatigue crack process in type 304 stainless steel at 538 °C, Fatigue Fract. Eng. Mater. Struct. 15 (1992) 671–684 [CrossRef] [Google Scholar]
  18. T. Magnin, C. Ramade, Low-cycle fatigue damage mechanisms of f.c.c and b.c.c polycrystals homologous behaviour, Mater. Sci. Eng. A 118 (1989) 41–51 [CrossRef] [Google Scholar]
  19. A. Bataille, T. Magnin, K.J. Miller, Numerical simulation of surface fatigue microcracking processes, Mechanical Engineering Publications, London, 1992, pp. 407–419 [Google Scholar]
  20. V.C. Jesper, Structural evolution and mechanisms of fatigue in polycristalline brass, Thèse de Doctorat, Technical University of Denmark, 1998 [Google Scholar]
  21. H. Kitagawa, S. Takahashi, C.M. Suh, S Miyahita, Quantitative analysis of fatigue process-microcracks and slip lines under cyclic strains, ASTM-STP 675 (1978) 420–439 [Google Scholar]
  22. A. Bataille, Modélisation numérique de l’endommagement physique en fatigue – cas de l’acier 316L et d’un acier ferrito-perlitique, Thèse de Doctorat, Univ. de Lille, 1992 [Google Scholar]
  23. T. Magnin, L. Coudreuse, J.M. Lardon, A quantitative approach to fatigue damage evolution in FCC and BCC stainless steels, Scripta metallurgica 19 (1985) 1487–1490 [CrossRef] [Google Scholar]
  24. M. Sarfarazi, A micromechanical model of microcracking for brittle polycristalline solids, Eng. Fract. Mech. 32 (1989) 1–20 [CrossRef] [Google Scholar]
  25. Y. Qiao, S.S. Chakravfarthula, Effects of randomness of grain boundary resistance on fatigue initiation life, Int. J. Fatigue 27 (2005) 1251–1254 [CrossRef] [Google Scholar]
  26. J. Lankford, The influence of microstructure on the growth of small fatigue cracks, Fat. Fract. Eng. Mater. Struct. 8 (1985) 161–175 [Google Scholar]
  27. K. Tokaji, T. Ogawa, Y. Harada, The growth of small fatigue cracks in a low carbon steel; The effect of microstructure and limitations of linear elastic fracture mechanics, Fatigue Fract. Eng. Mater. Struct. 9 (1986) 205–217 [CrossRef] [Google Scholar]
  28. Y.Z. Wang, J.D. Atkinson, R. Akid, R.N. Parkins, Crack interaction, coalescence and mixed mode fracture mechanics, Fatigue Fract. Eng. Mater. Struct. 19 (1996) 427–439 [CrossRef] [Google Scholar]
  29. Y. Ochi, A. Ishii, K. Sasaki, An experimental and statistical investigation of surface fatigue crack initiation and growth, Fatigue Fract. Eng. Mater. Struct. 4 (1985) 327–339 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.