Open Access
Issue
Mécanique & Industries
Volume 12, Number 1, 2011
Page(s) 25 - 36
DOI https://doi.org/10.1051/meca/2011006
Published online 14 March 2011
  1. K.D. Walters, J.H. Leylek, A detailed analysis of film-cooling physics, part 1: streamwise injection with cylindrical holes, 1994, ASME Paper, 97-GT-269 [Google Scholar]
  2. A. Azzi, B.A. Jubran, Numerical Modeling of Film Cooling from Short Length Stream-Wise Injection Holes, Heat and Mass Transf. 39 (2003) 345–353 [Google Scholar]
  3. A. Azzi, B.A. Jubran, Numerical Modelling of Film Cooling from Converging Slot-Hole, J. Heat Mass Transfer 43 (2007) 381–388 [Google Scholar]
  4. S. Baheri, S.P. Alavi Tabrizi, B.A. Jubran, Film Cooling Effectiveness from Trenched Shaped and Compound Holes, J. Heat Mass Transf. 44 (2008) 989–998 [CrossRef] [Google Scholar]
  5. S. Baheri, B.A. Jubran, S.P. Alavi Tabrizi, The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes, ASME Paper # GT2008-50318, Proc. ASME Turbo Expos 2008 Conference, June 9–13 [Google Scholar]
  6. F. Nemdili, A. Azzi, G. Theodoridis, B.A. Jubran, Reynolds Stress Transport Modeling of Film Cooling at the Leading Edge of a Symmetrical Turbine Blade Model, J. Heat Trans. Eng. 29 (2008) 950–960 [CrossRef] [Google Scholar]
  7. S. Baheri, B.A. Jubran, S.P. Alavi Tabrizi, Computational Investigation of Film Cooling from Trenched Holes Near the Leading Edge of a Turbine Blade, J. Numerical Heat Transfer, Part A: Applications 53 (2008) 208–322 [Google Scholar]
  8. F. Nemdili, A. Azzi, B.A. Jubran, Shower Head Film Cooling Effectiveness of a Symmetrical Turbine Blade Model – Effect of Lateral Injection, Proc. HT2007 2007, Paper # HT2007-32081, ASME-JSME Thermal Engineering Summer Heat Transfer Conference, July 8–12 [Google Scholar]
  9. M. Salcudean, I. Gartshore, K. Zhang, I. McLean, An experimental study of film cooling effectiveness near the leading edge of a turbine blade, Trans. ASME J. Turbomachinery 116 (1994) 71–79 [CrossRef] [Google Scholar]
  10. A. Azzi, B.A. Jubran, Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade, Heat and Mass Transf. 40 (2004) 501–508 [Google Scholar]
  11. G. Wagner, Experimental investigations of showerhead film cooling on the leading edge of a turbine blade, Ph.D. Thesis No: 3755, 2007, Laboratoire de thermique appliquée et de turbomachines, École Polytechnique Fédérale de Lausanne [Google Scholar]
  12. S. Ardey, L. Fottner, Flow Field Measurements on a Large Scale Turbine Cascade with Leading Edge Film Cooling by Two Rows of Holes, 1997, ASME Paper No. 97-GT-524 [Google Scholar]
  13. S. Ardey, L. Fottner, A Systematic Experimental Study on the Aerodynamics of Leading Edge Film Cooling on a Large Scale High Pressure Turbine Cascade, 1997, ASME Paper No. 98-GT-434 [Google Scholar]
  14. S. Ardey, 3D-Messung des Strömungsfeldes um die filmgekühlte Vorderkante einer Referenzschaufel Ph.D. Thesis, University of the Armed Forces Munich, 1998 [Google Scholar]
  15. D. Bohn, K. Kusterer, Aerothermal Investigation of Mixing Flow Phenomena in Case of Radially Inclined Ejection Holes at the Leading Edge, ASME J. Turbo Mach. 122 (2000) 334–339 [CrossRef] [Google Scholar]
  16. R.S. Bunker, A review of shaped hole turbine film-cooling technology, ASME J. Heat Trans. 127 (2005) 441–453 [CrossRef] [Google Scholar]
  17. Y. Lu, A. Dhungel, S.V. Ekkad, R.S. Bunker, Film Cooling Measurements for Cratered Cylindrical Inclined Holes, ASME Paper, GT2007-27386 [Google Scholar]
  18. J.E. Sargison, S.M. Guo, M.L. Oldfield, G.D. Lock, A.J. Rawlinson, A converging slot-hole film-cooling geometry-part 1: low-speed flat-plate heat transfer and loss, ASME J. Turbomach. 124 (2002) 453–460 [CrossRef] [Google Scholar]
  19. Y. Lu, A. Dhungel, S.V. Ekkad, R.S. Bunker, Effect of Trench Width and Depth on Film Cooling from Cylindrical Holes Embedded in Trenches ASME Paper, GT2007-27388 [Google Scholar]
  20. Y. Lu, Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades, Int. J. Heat Fluid Flow 28 (2007) 922–931 [CrossRef] [Google Scholar]
  21. J.E. Sargison, S.M. Guo, M.L. Oldfield, G.D. Lock, A.J. Rawlinson, A converging slot-hole film-cooling geometry-part 2: transonic nozzle guide vane heat transfer and loss, ASME J. Turbomach. 124 (2002) 461–471 [CrossRef] [Google Scholar]
  22. ANSYS CFX 10.0 (2005) Documentations [Google Scholar]
  23. D. Lakehal, G. Theodoridis, W. Rodi, Three dimensional flow and heat transfer calculations of film cooling at the leading edge of asymmetrical turbine blade model, Int. J. Heat Fluid Flow 22 (2001) 113–122 [CrossRef] [Google Scholar]
  24. F.R. Menter, Zonal two-equation k-ω turbulence model for aerodynamic flows (1993) AIAA Paper, 93-2906 [Google Scholar]
  25. D.G. Bogard, K.A. Thole, Gas Turbine Film Cooling, J. Propuls. Power 22 (2006) 249–270 [CrossRef] [Google Scholar]
  26. R.S. Bunker, Film Cooling: Breaking the Limits of Diffusion Shaped Holes Turbine 09 Symposium on Heat Transfer in Gas Turbine Systems, 2009, Antalya, Turkey [Google Scholar]
  27. Z. Gao, D.P. Narzary, J. Han, Film cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes. Paper # HT-2007-32098. In. Proc. of the ASME-JSME thermal engineering summer heat transfer conference, July 8–12, 2007, Vancouver, BC, Canada [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.