Open Access
Mécanique & Industries
Volume 12, Number 3, 2011
CFM 2011
Page(s) 193 - 198
Published online 20 July 2011
  1. S. Naamane, G. Monnet, B. Devincre, Low temperature deformation in iron studied with dislocation dynamics simulations, Int. J. Plast. 26 (2010) 84–92 [CrossRef] [Google Scholar]
  2. G. Monnet, S. Naamane, B. Devincre, Orowan Strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations, Acta Mater. 59 (2011) 451–461 [CrossRef] [Google Scholar]
  3. K. Obrtlik, C.F. Robertson, B. Marini, Dislocation structures in 16MND5 pressure vessel steel strained in uniaxial tension, J. Nucl. Mater. 342 (2005) 35–41 [CrossRef] [Google Scholar]
  4. Y. Estrin, H. Mecking, A unified phenomenological description of work-hardening and creep based on one-parameter models, Acta Metall. 32 (1984) 57–70 [CrossRef] [Google Scholar]
  5. O. Fandeur, Procédure Runge-Kutta d’intégration explicite à pas de temps adaptatif pour lois de comportement en grandes transformations dans CAST3M, communication personnelle, 2010 [Google Scholar]
  6. J. Besson, G. Cailletaud, J. Chaboche, S. Forest, Mécanique non linéaire des matériaux, Hermès, Paris, 2001 [Google Scholar]
  7. J. Mandel, Plasticité classique et viscoplasticité, CISM Courses and lectures, Udine, Springer Verlag, Berlin, Vol. 97, 1971 [Google Scholar]
  8. S. Forest, M. Amestoy, Mécanique des milieux continus, Cours de l’École des Mines, Les Presses de l’École des Mines, 2008 [Google Scholar]
  9. M. Fivel, S. Forest, Plasticité cristalline et transition d’échelle: cas du monocristal, doc M4-016, Les Techniques de l’Ingénieur [Google Scholar]
  10. D.J. Quesnel, A. Sato, M. Meshii, Solution softening and hardening in iron-carbon system, Mater. Sci. Eng. 18 (1975) 199–208 [CrossRef] [Google Scholar]
  11. W.A. Spitzig, Effects of orientation, temperature and strain rate on deformation of Fe-0.16 Wt percent Ti single-crystals, Mater. Sci. Eng. 12 (1973) 191–202 [CrossRef] [Google Scholar]
  12. E. Kuramoto, Y. Aono, K. Kitajima, Thermally activated slip deformation of high-purity iron single-crystals between 4.2-K and 300-K, Scr. Metall. Mater. 13 (1979) 1039–1042 [Google Scholar]
  13. W.A. Spitzig, A.S. Keh, Effect of orientation and temperature on plastic flow properties of iron single crystals, Acta Metall. 18 (1970) 611–622 [CrossRef] [Google Scholar]
  14. B. Jaoul, D. Gonzalez, Déformation plastique de monocristaux de fer, J. Mech. Phys. Solids 9 (1961) 16–38 [CrossRef] [Google Scholar]
  15. A.S. Keh, Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298 degrees K, Philos. Mag. 12 (1965) 9–30 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.