Open Access
Issue
Mécanique & Industries
Volume 12, Number 4, 2011
Page(s) 247 - 264
DOI https://doi.org/10.1051/meca/2011018
Published online 01 July 2011
  1. P. Viot, Comportement des matériaux cellulaires sous sollicitations dynamiques. Partie 1 : approche macroscopique, Mécanique & Industries 11 (2011) 1–23 [CrossRef] [EDP Sciences] [Google Scholar]
  2. P. Chambon, E. Cloutet, H. Cramail, Synthesis of core – shell polyurethane – poly(dimethylsiloxane) particles in supercritical carbon dioxide, Macromolecules 37 (2004) 5856–5859 [CrossRef] [Google Scholar]
  3. C. Mabille, V. Schmitt, Ph. Gorria, F. Leal Calderon, V. Faye, B. Déminière, J. Bibette, Rheological and shearing conditions for the preparations of monodisperse emulsions, Langmuir 16 (2000) 422–429 [CrossRef] [Google Scholar]
  4. F. Leal Calderon, T. Stora, O. Mondain-Monval, P. Poulin, J. Bibette, Direct measurement of colloidal forces, Phys. Rev. Lett. 72 (1994) 2959 [CrossRef] [PubMed] [Google Scholar]
  5. A. García Loera, F. Cara, M. Dumon, JP Pascault, Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer, Macromolecules 35 (2002) 6291–6297 [CrossRef] [Google Scholar]
  6. L. Gibson, F. Ashby, Cellular solids. Structures and properties, édition: Cambridge Solid State Science Series, 1997 [Google Scholar]
  7. N.J. Mills, Introduction to polymer foam microstructure Polymer Foams Handbook, 2007, pp. 1–18 [Google Scholar]
  8. P. Viot, R. Bouix, I. Iordanoff, J.L. Lataillade, Deformation localisation modelling of polymer foam microstructure under compression: a new approach by discrete element modelling, Compos. Struct. 92 (2010) 585–592 [CrossRef] [Google Scholar]
  9. J.A. Reglero Ruiz, P. Viot, M. Dumon, Foaming behaviour and compressives properties of microcellular nanostructured polystyrene, Cellular Polymers 28 (2009) 363–385 [Google Scholar]
  10. P. Viot, D. Bernard, E. Plougonven, Polymeric foam deformation under dynamic loading by the use of the microtomographic technique, J. Mater. Sci. 42 (2007) 7202–7213 [CrossRef] [Google Scholar]
  11. E. Plougonven, D. Bernard, P. Viot, Quantitative analysis of the deformation of polypropylene foam under dynamic crash loading. Progress in Biomedical Optics and Imaging – Proc. SPIE 6318 (2006) [Google Scholar]
  12. A.D. Kraynik, W.E. Warren, The elastic behaviour of low density cellular plastics chapter 7 I low density cellular plastics, N.C. Hilyard, A. Cunningham (eds), Chapmann and Hall, London, 1994 [Google Scholar]
  13. R.E. Williams, Space-filling polyhedron: its relation to aggregates of soap bubbles, plant cells, and metal crystallites, Science 161 276–277 [Google Scholar]
  14. N. Fillot, I. Iordanoff, Y. Berthier, A granular dynamic model for the degradation of material, ASME J. Trib. 126 (2004) 606–614 [Google Scholar]
  15. I. Iordanoff, B. Seve, Y. Berthier, Solid third body analysis using a discrete approach: influence of adhesion and particle size on the macroscopic behavior of the contact, ASME J. Trib. 124 (2002) 530–538; (2002 ASME J. Trib. Best Paper Award). [Google Scholar]
  16. P. Viot, E. Plougonven, D. Bernard, Microtomography on polypropylene foam under dynamic loading. 3d analysis of bead morphology evolution. Composites part A 39 (2008) 1266–1281 [Google Scholar]
  17. A. Desforges, H. Deleuze, O. Mondain-Monval, R. Backov, Palladium nanoparticle generation within microcellular polymeric foam and size dependence under synthetic conditions, Ind. Eng. Chem. Res. 44 (2005) 8521–29 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.