Open Access
Issue
Mécanique & Industries
Volume 12, Number 6, 2011
Page(s) 421 - 431
DOI https://doi.org/10.1051/meca/2011143
Published online 06 January 2012
  1. NF EN 12541, Pressure flushing valves and automatic closing urinal valves (PN10), ICS 91.140.70, 2003 [Google Scholar]
  2. BS EN ISO 3822-3/A1, Acoustic laboratory tests on noise emission from appliances and equipment used in water supply installations, 1997 [Google Scholar]
  3. J. Romeu, S. Jiménez, R. Capdevilla, Noise emitted by water supply installations, Applied Acoustics 65 (2004) 401–419 [Google Scholar]
  4. Y. Lecoffre, Cavitation Bubbles Trackers, Balkema. 399 pp. ISBN 90 5410 783 9. 75 Hfl., 1999 [Google Scholar]
  5. C.E. Brennen, Cavitation and bubbles dynamics, Oxford University Press, ISBN 0-19-509409, 1995, pp. 291 [Google Scholar]
  6. H. Gao, X. Fu, H. Yang, T. Tsukiji, Numerical investigation of cavitating flow behind a poppet valve in water hydraulic system, Journal of Zheijang University Science V3 4 (2002) 395–400 [Google Scholar]
  7. Fluent documentation user’s guide [Google Scholar]
  8. Star CCM + documentation [Google Scholar]
  9. A.H. Chorin, Numerical Solution of Navier-Stokes equations, Mathematics of computation, 1968, 22-745-762 [Google Scholar]
  10. I. Demirdzic, Z. Lilek, M. Peric, A collocated finite volume method for predicting flows at all speeds, Int. J. Num. Methods Fluids 16 (1993) 1029–1050 [Google Scholar]
  11. I. Demirdzic, S. Musaferija, Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology, Comput. Methods Appl. Mech. Eng. (1995) 1–21 [Google Scholar]
  12. J.H. Ferziger, M. Peric, M. Computational Methods for Fluid Dynamics, 3rd rev. ed., Springer-Verlag, Berlin, 2002 [Google Scholar]
  13. S.R. Mathur, J.Y. Murthy, Pressure-based method for unstructured meshes, Numerical Heat Transfer, Part B: Fundamentals 31 (1997) 195–214 [Google Scholar]
  14. S.R. Mathur, J.Y. Murthy, Pressure boundary conditions for incompressible flow using unstructured meshes, Numerical Heat Transfer, Part B: Fundamentals 32 (1997) 283–298 [Google Scholar]
  15. M. Peric, R. Kressler, G. Scheuerer, Comparison of finite-volume numerical methods with staggered and colocated grids, Computers & Fluids 16 (1988) 389–403 [Google Scholar]
  16. B.E. Launder, D.B. Spalding, The Numerical Computation of Turbulent Flows, Comp. Methods Appl. Mech. Eng. 3 (1974) 269–289 [Google Scholar]
  17. D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California, 1998 [Google Scholar]
  18. A.K. Singhal, H.Y. Li, M.M. Athavale, Y. Jiang, Mathematical Basis and Validation of the Full Cavitation Model, ASME FEDSM’01, New Orleans, Louisiana, 2001 [Google Scholar]
  19. H. Reichardt, Vollstaendige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Z. Angew. Math. Mech. 31 (1951) 208-219 [Google Scholar]
  20. M. Wolfstein, The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient, Int. J. Heat Mass Trans. 12 (1969) 301–318 [Google Scholar]
  21. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation”, NASA TM 106721, 1994 [Google Scholar]
  22. J. Sauer, Instationaer kavitierende Stroemungen – Ein neues Modell, basierend auf Fron Capturing VOF und Blasendynamik, Dissertation, Universitaet Karlsruhe, 2000 [Google Scholar]
  23. S.B. Pope Turbulent Flows, Cambridge University Press, 2000, pp. 771, ISBN 0-521-59886-9 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.