Open Access
Issue
Mechanics & Industry
Volume 13, Number 1, 2012
Page(s) 45 - 57
DOI https://doi.org/10.1051/meca/2011149
Published online 23 April 2012
  1. H. Belghazi, M. El Ganaoui, J.C. Labbe, Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, Int. J. Thermal Sci. 49 (2010) 311–318 [CrossRef] [Google Scholar]
  2. T. Nakatsuji, K. Okubo, T. Fujii, M. Sasada, Y. Noguchi, Study on crack initiation at small holes of one-piece brake discs, Soc. Automot. Eng., Inc 2002-01-0926, 2002 [Google Scholar]
  3. T. Valvano, K. Lee, An analytical method to predict thermal distortion of a brake rotor, Soc. Automot. Eng., Inc 2000-01-0445, 2000 [Google Scholar]
  4. M.D. Hudson, R.L. Ruhl, Ventilated brake rotor air flow investigation, Soc. Automot. Eng., Inc 1997-01-033, 1997 [Google Scholar]
  5. J. Denape, N. Laraqi, Aspect thermique du frottement : mise en évidence expérimentale et éléments de modélisation, Mécanique & Industries 1 (2000) 563–579 [CrossRef] [Google Scholar]
  6. M. Hamraoui, Thermal behaviour of rollers during the rolling process, Appl. Therm. Eng. 29 (2009) 2386–2390 [CrossRef] [Google Scholar]
  7. M. Hamraoui, Z. Zouaoui, Modelling of heat transfer between two rollers in dry friction, Int. J. Thermal Sci. 48 (2009) 1243–1246 [CrossRef] [Google Scholar]
  8. N. Laraqi, Velocity and relative contact size effect on the thermal constriction resistance in sliding solids, ASME J. Heat Transf. 119 (1997) 173–177 [CrossRef] [Google Scholar]
  9. H. Yapıcı, M.S. Genç, G. Özısık, Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source, J. Therm. stress. 31 (2008) 476–493 [CrossRef] [Google Scholar]
  10. A. Baïri, N. Alilat, J.G. Bauzin, N. Laraqi, Three-dimensional stationary thermal behavior of a bearing ball, Int. J. Thermal Sci. 43 (2004) 561–568 [CrossRef] [Google Scholar]
  11. N. Laraqi, Thermal impedance and transient temperature due to a spot of heat on a half-space, Int. J. Thermal Sci. 49 (2010) 529–533 [CrossRef] [Google Scholar]
  12. A. Baïri, J.M. Garcia-de-Maria, N. Laraqi, Effect of thickness and thermal properties of film on the thermal behavior of moving rough interfaces, Eur. Phys. J. – Appl. Phys. 26 (2004) 29–34 [Google Scholar]
  13. D. Majcherczak, P. Dufrénoy, M. Naït-Abdelaziz, Thermal simulation of a dry sliding contact using a multiscale model – application to the braking problem, Therm. Stress., Osaka (Japan), 2001, pp. 437–440 [Google Scholar]
  14. F. Colin, A. Floquet, D. Play, Thermal contact Simulation in 2-D and 3-D mechanisms, ASME J. Tribol. 110 (1988) 247–252 [CrossRef] [Google Scholar]
  15. T.P. Newcomb, Transient temperatures attained in disk brakes, British J. Appl. Phys. 10 (1959) 339–340 [CrossRef] [Google Scholar]
  16. Fiche U.I.C. 541-3 : FREIN – Frein à disques et garnitures de frein à disques, 4e édition, 1993 [Google Scholar]
  17. E. Saumweber, Temperaturberechnung in bremsscheiben fürein beliebiges fahrprogramm, Leichtbau der Verkehrsfahrzeuge, Heft 3, 1969, Augsburg [Google Scholar]
  18. C. Cruceanu, Frâne pentru vehicule feroviare (Brakes for railway vehicles), edition Matrix Rom, Bucuresti, ISBN 978-973-755-200-6, 2007, p. 388 [Google Scholar]
  19. J. Reimpel, Technologie de freinage, Vogel Verlag, Würzburg, 1998 [Google Scholar]
  20. Gotowicki, Pier Francesco; Nigrelli, Vinzenco; Mariotti, Gabriele Virzi. Numerical and experimental analysis of a pegs- wing ventilated disk brake rotor, with pads and cylinders, 10th EAEC European Automotive Congress – Paper EAEC05YUAS04– P 5, 2005 [Google Scholar]
  21. VDI-Wearmeatlas4. Auflage, 1984 [Google Scholar]
  22. S. Morgan, R.W. Dennis, A theoretical prediction of disc brake temperatures and a comparison with experimental data, Girling Ltd. England. SAE-Paper 720090 [Google Scholar]
  23. W.M. Kays, I.S. Bjorklund, Heat transfer from a rotating cylinder with and without crossflow, Stanford University, ASME-Paper No. 55-a-71 [Google Scholar]
  24. L.D. Dorfman, Hydrodynamic resistance and heat loss of rotating solids, Oliver and Boyd, 1963 [Google Scholar]
  25. H.-R. Ehlers, Die mechanischen und waermetechnischen eigen selbstbeluefteten scheibenbremsen archiv fuer eisenbahntechnik, 1961 [Google Scholar]
  26. L.D. Dorfman, Hydrodynamic resistance and heat loss of rotating solids, oliver and boyd, L963 [Google Scholar]
  27. A. Fukano, H. Matsui, Development of a disc-brake design method using computer simulation of heat phenomena, SAE-Paper 860634 [Google Scholar]
  28. H.W. Schwartz, L.L. Hartter, S.K. Rhee, J.-E. Byers, Evaluation of gray lron brake discs for trucks by thermal modeling, Bendix Corp. SAE – Paper 751013 [Google Scholar]
  29. W.H. Mc. Adams, Heat Transmission. 3rd edition, Mc. Graw-Hill Book Co., inc. L954, p. 180 [Google Scholar]
  30. G.P. Merker, Konvektive Waermeuebertragung, Springer–Verlag Berlin Heidelberg, 1987 [Google Scholar]
  31. E.C. Chevereau Yves, Simulation de l’échauffement d’un disque de frein d’une moto de compétition sous Star-CD, Projet de formation Université de Maine [Google Scholar]
  32. ANSYS 11.0 User’s Manual Guide [Google Scholar]
  33. H. Carlos, Galindo Lopez, Evaluating new ways of conducting convective heat dissipation experiments with ventilated brake discs, Cranfield University, Bedfordshire, MK43 OAL [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.