Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 219 - 228
DOI https://doi.org/10.1051/meca/2012012
Published online 16 November 2012
  1. S.M. Aceves, D.L. Flowers, C.K. Westbrook, J.R. Smith, W. Pitz, R. Dibble, M. Christensen, B. Johansson, A multi-zone model for prediction of HCCI combustion and emissions, SAE paper 2000-01-0327, 2000 [Google Scholar]
  2. R. Dibble, M. Au, J. Girard, S.M. Aceves, D.L. Flowers, J. Martinez-Frias, J.R. Smith, Current research in HCCI at UC Berkeley and LLNL, SAE paper 2001-01-2511, 2001 [Google Scholar]
  3. S.M. Aceves, J. Martinez-Friaz, D.L. Flowers, J.R. Smith, R.W. Dibble, J.F. Wright, R.P. Hessel, A decoupled model of detailed fluid mechanics followed by detailed chemical kinetics for prediction of iso-octane HCCI combustion, SAE paper 2001-01-3612, 2001 [Google Scholar]
  4. S.C. Kong, N.A. Ayoub, R.D. Reitz, Modeling combustion in compression ignition homogeneous charge, SAE paper 920512, 1992 [Google Scholar]
  5. S.C. Kong, C.D. Marriott, R.D. Reitz, M. Christensen, Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD, SAE paper 2001-01-1026, 2001 [Google Scholar]
  6. M. Sjoberg, J.E. Dec, N.P. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure rise rates in HCCI engines, based on multi-zone modeling and experiments, SAE paper 2005-01-0113, 2005 [Google Scholar]
  7. R. Ogink, V. Golovitchev, Gasoline HCCI modeling : an engine cycle simulation code with a multi-zone combustion model, SAE paper 2002-01-1745, 2002 [Google Scholar]
  8. M. Christensen, B. Johansson, Influence of mixture quality on homogeneous charge compression ignition, SAE paper 982454, 1998 [Google Scholar]
  9. S.B. Fiveland, D.N. Assanis, Development of a two-zone combustion model accounting for boundary layer effects, SAE paper 2001-01-1028, 2001 [Google Scholar]
  10. S.M. Aceves, D.L. Flowers, J. Martinez-Frias, J.R. Smith, R. Dibble, M. Au, J. Girard, HCCI combustion : analysis and experiments, SAE paper 2001-01-2077, 2001 [Google Scholar]
  11. J.E. Dec, A computational study of the effects of low fuel loading and EGR on heat release rates and combustion limits in HCCI engines, SAE paper 2002-01-1309, 2002 [Google Scholar]
  12. A. Hultqvist, M. Christensen, B. Johansson, M. Richter, J. Nygren, J. Hult, M. Aldén, The HCCI combustion process in a single cycle-high-speed fuel tracer LIF and chemiluminescence imaging, SAE paper 2002-01-0424, 2002 [Google Scholar]
  13. M. Richter, J. Engstrom, A. Franke, M. Aldén, A. Hultqvist, B. Johansson, The influence of charge inhomogeneity on the HCCI combustion process, SAE paper 2000-01-2868, 2000 [Google Scholar]
  14. J. Villermaux, J.C. Devillon, Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique, Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, Elsevier, New York, 1972 [Google Scholar]
  15. S.B. Pope, PDF Methods for turbulent reactive flows, Progr. Energ. Combust. Sci. 11 (1985) 119 [Google Scholar]
  16. C. Dopazo, E.E. O’Brien, An approach to the autoignition of a turbulent mixture, Acta Astronaut. 1 (1974) 1239–1266 [Google Scholar]
  17. R.L. Curl, Dispersed phase mixing : I. Theory and effects in simple reactors, A.I.Ch.E. J. 9 (1963) 175–181 [Google Scholar]
  18. A.T. Hsu, Y.L.P. Tsai, M.S. Raju, Probability density function approach for compressible turbulent reacting flows, AIAA 32 (1994) 7 [Google Scholar]
  19. S. Subramaniam, S.B. Pope, A mixing model for turbulent reactive flows based on euclidean minimum spanning trees, Comb. Flame 115 (1998) 487–514 [Google Scholar]
  20. B. Yang, S.B. Pope, An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry, Comb. Flame 112 (1998) 16–32 [Google Scholar]
  21. F. Maroteaux, L. Noel, Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling, Comb. Flame 146 (2006) 256–267 [Google Scholar]
  22. M. Kraft, W. Wagner, An efficient stochastic chemistry approximation for the PDF transport equation, ISSN 0946-8633, 2001 [Google Scholar]
  23. M. Kraft, P. Maigaard, F. Mauss, M. Christensen, B. Johansson, Investigation of combustion emissions in a homogeneous charge compression injection engine : measurements and a new computational model, Proceedings of the Combustion Institute 28 (2000) 1195–1201 [Google Scholar]
  24. S. Mitarai, J.J. Riley, G. Kosàly, Testing of mixing models for Monte Carlo probability density function simulations, Phys. Fluids 17 (2005) 047101 [Google Scholar]
  25. Z. Warhaft, J. Lumley, An experimental study of the decay of temperature fluctuations in grid-generated turbulence, J. Fluid Mech. 88 (1978) 659–684 [Google Scholar]
  26. J. Chang, O. Güralp, Z. Filipi, D. Assanis, T.-W. Kuo, P. Najt, R. Rask, New heat transfert correlation for an hcci engine derived from measurements of instantaneous surface heat flux, SAE 2004-01-2996, 2004 [Google Scholar]
  27. J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill, New York, 1988 [Google Scholar]
  28. A.C. Hindmarsh, R. Serban CVode v 2.3.0. Center of applied scientific computing lawrence livermore national laboratory, April 2005 http://www.llnl.gov/CASC/sundials/description/description.html. [Google Scholar]
  29. A. Bhave, M. Balthasar, M. Kraft, F. Mauss, Numerical analysis of natural gas fuelled HCCI engine with exhaust gas recirculation, using a stochastic reactor model, University of Cambridge ISSN 1734-4273, 2003 [Google Scholar]
  30. F. Maroteaux, L. Noel, A. Ahmed, Numerical investigations on methods to control the rate of heat release of HCCI combustion using reduced mechanism of n-heptane with multidimensional CFD code, Combust. Theory Model. 11 (2007) 501–525 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.