Open Access
Issue
Mechanics & Industry
Volume 13, Number 4, 2012
Page(s) 279 - 290
DOI https://doi.org/10.1051/meca/2012020
Published online 06 November 2012
  1. F. Erdogan, Stress distribution in a non homogeneous elastic plane with cracks, J. Appl. Mech. 30 (1963) 232–237 [CrossRef] [Google Scholar]
  2. J.R. Rice, G.C. Sih, Plane Problems of Cracks in Dissimilar Media, ASME J. Appl. Mech. 32 (1965) 418–423 [Google Scholar]
  3. M.L. Williams, The stresses around a fault or crack in dissimilar media, Bull. Seismological Sot. Amer. 49 (1959) 199–404 [Google Scholar]
  4. J. Dundurs, Discussion of edge bonded dissimilar orthogonal elastic wedges under normal and shear loading, J. Appl. Mech. 36 (1977) 650–652 [Google Scholar]
  5. M. Comninou, The interface crack, J. Appl. Mech. 44 (1977) 631–636 [CrossRef] [Google Scholar]
  6. T.C. Wang, P. Stahle, Stress state in front of a crack perpendicular to bimaterial interface, Eng. Fract. Mech. 59 (1998) 471–485 [CrossRef] [Google Scholar]
  7. P.R. Marur, H.V. Tippur, A strain gage method for determination of fracture parameters in bi-material systems, Eng. Fract. Mech. 64 (1999) 87–104 [CrossRef] [Google Scholar]
  8. C. Bjerken, C. Persson, A numerical method for calculating stress intensity factors for interface cracks in bimaterials, Eng. Fract. Mech. 68 (2001) 235–246 [CrossRef] [Google Scholar]
  9. T. Ikeda, C.T. Sun, Stress intensity factor analysis for an interface crack between dissimilar isotropic materials under thermal stress, Int. J. Fract. 111 (2001) 229–249 [CrossRef] [Google Scholar]
  10. K. Yilan, L. Hua, Investigation of near tip displacement fields of a crack normal to and terminating at a bimaterial interface under mixed mode loading, Eng. Fract. Mech. 69 (2002) 2199–2208 [CrossRef] [Google Scholar]
  11. F. Jiang, Z.L. Deng, J.F. Wel, Crack propagation resistance along strength mismatched bimetallic interface, J. Mater. Eng. Performance 13 (2004) 93–98 [CrossRef] [Google Scholar]
  12. A. Cirello, B. Zuccarello, On the effects of a crack propagating towards the interface of a bimaterial system, J. Eng. Fract. Mech. 73 (2006) 1264–1277 [CrossRef] [Google Scholar]
  13. K. Madani, M. Belhouari, B.B. Bouiadjra, B. Sereir, M. Benguediab, Crack deflection at an interface of alumina/metal joint : A numerical analysis, Comput. Mater. Sci. 38 (2007) 625–630 [CrossRef] [Google Scholar]
  14. D. Ouinas, B.B. Bouiadjra, B. Sereir, J. Vina, Influence of bi-material interface on kinking behavior of a crack growth emanating from notch, Comput. Mater. Sci. 41 (2008) 508–514 [CrossRef] [Google Scholar]
  15. N. Kazi Tani, T. Tamine, G. Pluvinage, Numerical evaluation of energy release rate for several crack orientation and position to the bi-material interface plates, Damage and fracture Mechanics, Failure Analysis of Engineering Materials and Structures, Springer 2009, pp. 445–454 [Google Scholar]
  16. J.R. Rice, Elastic fracture mechanics concepts for interface crack, J. Appl. Mech. 55 (1988) 98–103 [Google Scholar]
  17. C.L. Tan, Y.L. Gao, Treatment of bi-material interface crack problems using the boundary element method, Eng. Fract. Mech. 36 (1990) 919–932 [CrossRef] [Google Scholar]
  18. E. Ergun, K. Aslantas, S. Tasgetin, Effect of crack position on stress intensity factor in particle-reinforced metal-matrix composites, Mech. Res. Comm. 35 (2008) 209–218 [CrossRef] [Google Scholar]
  19. E. Madenci, I. Guven, The finite element method and applications in engineering using ANSYS, Springer Edition, 2006 [Google Scholar]
  20. R.E. Peterson, Stress concentration factor, John Wiley and Sons, New York, 1974 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.