Open Access
Issue
Mechanics & Industry
Volume 13, Number 4, 2012
Page(s) 261 - 269
DOI https://doi.org/10.1051/meca/2012019
Published online 06 November 2012
  1. J. Schijve, Note on couple Stresses, J. Mech. Phys. Solids 14 (1966) 113–120 [CrossRef] [Google Scholar]
  2. R.D. Gauthier, W.E. Jahsman, A quest for micropolar elastic constants, J. Appl. Mech. 42 (1975) 369–374 [CrossRef] [Google Scholar]
  3. G.V. Krishna Reddy, N.K. Venkatasubramanian, On the flexural rigidity of a micropolar elastic cylinder, J. Appl. Mech. 45 (1978) 429–43l [CrossRef] [Google Scholar]
  4. R.S. Lakes, The role of gradient effects in the piezoelectricity of bone, IEEE Trans. Biomed. Eng. BME-27 (1980) 282–283 [Google Scholar]
  5. R.S. Lakes, Experimental microelasticity of two porous solids,Int. J. Solids Struc. 22 (1986) 55–63 [CrossRef] [Google Scholar]
  6. J.F.C. Yang, R.S. Lakes, Experimental study of micropolar and couple stress elasticity in compact bone in bending, J. Biome. 15 (1982) 91–98 [CrossRef] [Google Scholar]
  7. K. Hofstetter, C. Hellmich, J. Eberhardsteiner, Development and experimental validation of a continuum micromechanics model for the elasticity of wood, Eur. J. Mech. A/Solids 24 (2005) 1030–1053 [CrossRef] [Google Scholar]
  8. J. Fish, S. Kuznetsov, Computational continua,Int. J. Numer. Meth. Engng. 84 (2010) 774–802 [CrossRef] [Google Scholar]
  9. R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964) 51–78 [Google Scholar]
  10. R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4 (1968) 109–124 [Google Scholar]
  11. C.A. Eringen, Linear theory of micropolar elasticity, J. Math. Mech. 15 (1966) 909–923 [MathSciNet] [Google Scholar]
  12. E. Cosserat, F. Cosserat, Théorie des corps déformables, Hermann et Fils, Paris, 1909 [Google Scholar]
  13. R.A. Toupin, Elastic materials with couple-stresses, Arch. Rat. Mech. Anal. 11 (1962) 385–414 [Google Scholar]
  14. W.T. Koiter, Couple stresses in the theory of elasticity, I & II. Proc. K. Ned. Akad. Wet. B 67 (1964) 17–44 [Google Scholar]
  15. H.F. Tiersten, J.L. Bleustein, Generalized elastic continua, In : G. Herrmann, R.D. Mindlin (eds.), and Applied Mechanics, Pergamon Press, New York, 1974, pp. 67–103 [Google Scholar]
  16. I. Vardoulakis, J. Sulem, Bifurcation Analysis in Geomechanics, Chapman and Hall, London, 1995 [Google Scholar]
  17. R. Lakes, Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, In : Continuum Models for Materials with Microstructure, H.B. Mhlhaus (ed.), Wiley, Chichester, 1995, pp. 1–25 [Google Scholar]
  18. S. Papargyri-Beskou, D.E. Beskos, Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates, Arch. Appl. Mech. 78 (2008) 625–635 [CrossRef] [Google Scholar]
  19. S.K. Park, X.-L. Gao, Variational formulation of a modified couple stress theory and its application to a simple shear problem, Z. Angew. Math. Phys. 59 (2008) 904–917 [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Farahmand, S. Arabnejad, Developing a Novel finite elastic approach in strain gradient theory for microstructures, Int. J. Multiscale Comput. Eng. 8 (2010) 441–446 [CrossRef] [Google Scholar]
  21. E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95 (1999) 299–314 [CrossRef] [Google Scholar]
  22. G.E. Exadaktylos, I. Vardoulakis, Microstructure in linear elasticity and scale effects : a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics 335 (2001) 81–109 [CrossRef] [Google Scholar]
  23. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids 51 (2003) 1477–1508 [Google Scholar]
  24. S. Papargyri-Beskou, A.E. Giannakopoulos, D.E. Beskos, Variational analysis of gradient elastic flexural plates under static loading, Int. J. Solids Struc. 47 (2010) 2755–2766 [CrossRef] [Google Scholar]
  25. K.S. Surana, S.R. Petti, A.R. Ahmadi, J.N. Reddy, On p-version hierarchical interpolation functions for higher order continuity finite element models, Int. J. Comput. Eng. Sci. 2 (2002) 653–673 [CrossRef] [Google Scholar]
  26. K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version of finite element method for self-adjoint operators in BVP, Int. J. Comput. Eng. Sci. 3 (2002) 155–218 [CrossRef] [Google Scholar]
  27. K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version of finite element method for non-self-adjoint operators in BVP, Int. J. Comput. Eng. Sci. 3 (2003) 737–812 [CrossRef] [Google Scholar]
  28. K.S. Surana, A.R. Ahmadi, J.N. Reddy, The k-version of Finite Element Method for Nonlinear Operators in BVP, Int. J. Comput. Eng. Sci. 5 (2004) 133–207 [CrossRef] [Google Scholar]
  29. J.N. Reddy, Theory and analysis of elastic plates and shells, Second Edition, Taylor and Francis, Philadelphia, 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.