Open Access
Issue
Mechanics & Industry
Volume 13, Number 4, 2012
Page(s) 245 - 254
DOI https://doi.org/10.1051/meca/2012018
Published online 25 October 2012
  1. M.F. White, Simulation and analysis of machinery fault signals, J. Sound Vib. 93 (1984) 95–116 [Google Scholar]
  2. R.B. Randall, A new method of modelling gear faults, Trans. ASME J. Mech. Des. 104 (1981) 259–267 [Google Scholar]
  3. P.D. McFadden, Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration, Mech. Syst. Signal Process. 1 (1987) 173–183 [Google Scholar]
  4. W. Wang, Early detection of gear tooth cracking using the resonance demodulation technique, Mech. Syst. Signal Process. 15 (2001) 887–903 [Google Scholar]
  5. P.D. McFadden, Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration, Trans. ASME J. Vib. Acoust. Stress. Reliab. Des. 108 (1986) 165–170 [Google Scholar]
  6. Hui Li, Yuping Zhang, Haiqi Zheng, Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network, J. Mech. Sci. Technol. 23 (2009) 2780–2789 [Google Scholar]
  7. F. Chaari, T. Fakhfakh, M. Haddar, Simulation numérique du comportement dynamique d’une transmission par engrenages en présence de défauts de dentures, Mécanique & Industries 6 (2006) 625–633 [Google Scholar]
  8. S.R. Qin, Y.M. Zhong, Research on the unified mathematical model for FT, STFT and WT and its application, Mech. Syst. Signal Process. 18 (2004) 1335–1347 [Google Scholar]
  9. Y.M. Zhan, A.K.S. Jardine, Adaptive autoregressive modeling of non-stationary vibration signals under distinct gear states. Part 2 : experimental analysis, J. Sound Vib. 3 (2005) 451–476 [Google Scholar]
  10. C.J. Stander, P.S. Heyns, W. Schoombie, Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions, Mech. Syst. Signal Process. 16 (2002) 1005–1024 [Google Scholar]
  11. G. Meltzer, Y.Y. Ivanov, Fault detection in gear drives with nonstationary rotational speed – Part I : the time–frequency approach, Mech. Syst. Signal Process. 17 (2003) 1033–1047 [Google Scholar]
  12. N. Baydar, A. Ball, Detection of gear deterioration under varying load conditions by using the instantaneous power spectrum, Mech. Syst. Signal Process. 14 (2000) 907–921 [Google Scholar]
  13. I. Yesilyurt, Fault detection and location in gears by the smoothed instantaneous power spectrum distribution, NDT&E Int. 36 (2003) 535–542 [Google Scholar]
  14. C. Kar, A.R. Mohanty, Monitoring gear vibrations through motor current signature analysis and wavelet transform, Mech. Syst. Signal Process. 20 (2006) 158–187 [Google Scholar]
  15. S. Loutridis, A local energy density methodology for monitoring the evolution of gear faults, NDT&E Int. 37 (2004) 447–453 [Google Scholar]
  16. Y. Ohue, A. Yoshida, M. Seki, Application of the wavelet transform to health monitoring and evaluation of dynamic characteristics, Proc. Inst. Mech. Eng. 218 (2004) 1–12 [Google Scholar]
  17. Z.K. Peng, F.L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics : a review with bibliography, Mech. Syst. Signal Process. 18 (2004) 199–221 [Google Scholar]
  18. I. Yesilyurt, The application of conditional moments analysis to gearbox fault detection–A comparative study using the spectrogram and scalogram, NDT&E Int. 37 (2004) 309–320 [Google Scholar]
  19. H. Ozturk, M. Sabuncu, I. Yesilyurt, Early detection of pitting damage in gears using mean frequency of scalogram, J. Vib. Control 14 (2008) 469–484 [Google Scholar]
  20. F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time–frequency signal representations, IEEE Signal Process. Mag. 9 (1992) 21–67 [Google Scholar]
  21. J. Antoni, R.B. Randall, The spectral kurtosis : application to the vibratory surveillance and diagnostics of rotating machines, Mech. Syst. Signal Proc. 20 (2006) 308–331 [Google Scholar]
  22. D.F. Dwyer, Detection of non-Gaussian signals by frequency domain kurtosis estimation, in : Proceedings of the International Conference on Acoustic, Speech, and Signal Processing, Boston 1984, pp. 607–610 [Google Scholar]
  23. J. Antoni, The spectral kurtosis : a useful tool for characterizing non-stationary signals, Mech. Sys. Signal Proc. 20 (2006) 282–307 [Google Scholar]
  24. J. Antoni, Fast computation of the kurtogram for the detection of transient faults, Mech. Sys. Signal Proc. 21 (2007) 108–124 [Google Scholar]
  25. M. Merzoug, A. Miloudi, K. Brahimi, Comportement dynamique d’une transmission par engrenages – Analyse de la stabilité. XVe Congrès Français de Mécanique, Nancy, France, 2001, pp. 3–7 [Google Scholar]
  26. F.K. Choy, V. Polyshchuk, J.J. Zakrajsek, R.F. Handschuh, D.P. Townsend, Analysis of the effects of surface pitting and wear on the vibrations of a gear transmission system, Tribol. Int. 29 (1996) 77–83 [Google Scholar]
  27. J. Antoni, web page; http://www.utc.fr/_antoni/S [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.