Open Access
Issue
Mechanics & Industry
Volume 14, Number 3, 2013
Page(s) 219 - 225
Section Technical brief
DOI https://doi.org/10.1051/meca/2013052
Published online 12 June 2013
  1. H. Gezer, B. Aydemir, The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods, Mater. Des. 31 (2010) 3564–3567 [CrossRef] [Google Scholar]
  2. R. Lopez-Anido, P. Antonis Michael, C. Thomas Sandford, Experimental characterization of FRP composite-wood pile structural response by bending tests, Mar. Struct. 16 (2003) 257–274 [CrossRef] [Google Scholar]
  3. R.D.S.G. Campilho, M.F.S.F. de Moura, A.M.J.P. Barreto, J.J.L. Morais, J.J.M.S. Domingues, Experimental and numerical evaluation of composite repairs on wood beams damaged by cross-graining, Constr. Build. Mater. 24 (2010) 531–537 [CrossRef] [Google Scholar]
  4. Y.-F. Li, Y.-M. Xie, M.-J. Tsai, Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets, Constr. Build. Mater. 23 (2009) 411–422 [CrossRef] [Google Scholar]
  5. A. Camille Issa, Z. Kmeid, Advanced wood engineering: glulam beams, Constr. Build. Mater. 19 (2005) 99–106 [CrossRef] [Google Scholar]
  6. G. Wu, Z.T. Lu, Z.S. Wu, Strength and ductility of concrete cylinders confined with FRP composites, Constr. Build. Mater. 20 (2006) 134–148 [CrossRef] [Google Scholar]
  7. F. Bentayeb, K. Ait Tahar, A. Chateauneuf, New technique for reinforcement of concrete columns confined by embedded composite grid, Constr. Build. Mater. 22 (2008) 1624–1633 [CrossRef] [Google Scholar]
  8. J.B. Mander, M.J.N. Priestley, R. Park, Teocalli stress–strain model for confined concrete, J. Struct. Eng. 114 (1988) 1804–49 [CrossRef] [Google Scholar]
  9. L.Y. Li, Y.C. Guo, F. Liu, J.H. Bungey, An experimental and numerical study of the effect of thickness and length of CFRP on performance of repaired reinforced concrete beams, Constr. Build. Mater. 20 (2006) 901–9 [CrossRef] [Google Scholar]
  10. M. Corradi, A. Borri, Fir and chestnut timber beams reinforced with GFRP pultruded elements, Compos. Part B: Eng. 38 (2007) 172–81 [CrossRef] [Google Scholar]
  11. B. Taljsten, Strengthening concrete beams for shear with CFRP sheets, Constr. Build. Mater. 17 (2003) 15–26 [CrossRef] [Google Scholar]
  12. E. Montoya, F.J. Vecchio, S.A. Sheikh, Numerical evaluation of the behaviour of steel- and FRP-confined concrete columns using compression field modelling, Eng. Struct. 26 (2004) 1535–1545 [CrossRef] [Google Scholar]
  13. B.M. Luccioni, V.C. Rougier, A plastic damage approach for confined concrete, Comput. Struct. 83 (2005) 2238–2256 [CrossRef] [Google Scholar]
  14. A. Mirmiran, K. Zagers, W. Yuan, Nonlinear finite element modeling of concrete confined by fiber composites, Finite Elem. Anal. Des. 35 (2000) 79–96 [CrossRef] [Google Scholar]
  15. M.N. Fardis, H.H. Khalili, FRP-encased concrete as a structural material, Mag. Concr. Res. 34 (1982) 191–202 [CrossRef] [Google Scholar]
  16. A. Nanni, N.M. Bradford, FRP-jacketed concrete under uniaxial compression, Const. Build. Mater. 9 (1995) 115–124 [CrossRef] [Google Scholar]
  17. S.H. Ahmad, A.R. Khaloo, A. Irshaid, Behavior of concrete spirally confined by fiberglass filaments, Mag. Concr. Res. 43 (1991) 143–148 [CrossRef] [Google Scholar]
  18. M. Samaan, A. Mirmiran, M. Shahawy, Model of concrete confined by fiber composites, J. Struct. Eng. ASCE 124 (1998) 1025–1031 [CrossRef] [Google Scholar]
  19. V.M. Karbhari, A. Mirmiran, Construction specifications for bonded repair and retrofit of concrete structures using FRP composite, Results of a NCHRP study, Florida, USA, 2004 [Google Scholar]
  20. A.M. Mirmiran, A. Nanni, V.M. Karbhari, Bonded repair and retrofit of concrete structures using FRP composites, NCHRP Report 514, Transportation Research Board, 2004 [Google Scholar]
  21. A.M. Mirmiran, A. Beitelman, Test and modeling of carbon-wrapped concrete columns, Compos. Part B: Eng. ASCE 31 (2000) 471–80 [CrossRef] [Google Scholar]
  22. G. Hale, A. Bulent, The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods, Mater. Des. 31 (2010) 3564–3567 [CrossRef] [Google Scholar]
  23. J.-P. Biger, Pathologie des structures en bois, Techniques de l’Ingénieur, traité Construction, C 2450 [Google Scholar]
  24. M. Oudjene, M. Khelifa, Elasto-plastic constitutive law for wood behaviour under compressive loadings, Constr. Build. Mater. 23 (2009) 3359–3366 [CrossRef] [Google Scholar]
  25. M. Oudjene, M. Khelifa, Finite element modelling of wooden structures at large deformations and brittle failure prediction, Mater. Des. 30 (2009) 4081–4087 [CrossRef] [Google Scholar]
  26. ABAQUS, Theory manual, Version 6.2, Hibbit, Karson and Sorensen, Inc., 2001 [Google Scholar]
  27. J.C. Simo, T.J.R. Hughes, Computational inelasticity, Springer, New York, 1998 [Google Scholar]
  28. Y. Lobel, Problèmes de calcul des barres à inertie variable en bois lamellé collé, Recueil de contributions au calcul des éléments et structures bois (première partie), Annales de l’ITBTP, No. 466, 1988 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.