Open Access
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 229 - 238
Published online 14 August 2013
  1. A. Asundi, A.Y.N. Choi, Fiber metal laminates: an advanced material for future aircraft, Mater. Process. Technol. 63 (1997) 384–93 [Google Scholar]
  2. A. Vlot, L.B. Vogelesang, De Vries, Towards application of fiber metal laminates in large aircraft, Aircraft Eng. Aerospace Technol. 71 (1999) 558–70 [CrossRef] [Google Scholar]
  3. G. Marsh, Airframes exploit composites in battle for supremacy, Reinforced Plastics 49 (2005) 26–32 [CrossRef] [Google Scholar]
  4. D. Ngo-Cong, N. Mai-Duy, W. Karunasena, T. Tran-Cong, Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Comput. Struct. 85 (2011) 1–13 [CrossRef] [Google Scholar]
  5. Y.F. Xing, B. Liu, New exact solution for free vibrations of orthotropic rectangular plates, Compos. Struct. 89 (2009) 567–74 [Google Scholar]
  6. M. Ganapathi, A. Kalyani, B. Mondal, T. Prakash, Free vibration analysis of simply supported composite laminated panels, Compos. Struct. 90 (2009) 100–03 [CrossRef] [Google Scholar]
  7. A.W. Leissa, A.F. Martin, Vibration and buckling of rectangular composite plates with variable fiber spacing, Compos. Struct. 14 (1990) 339–57 [CrossRef] [Google Scholar]
  8. Y. Xiang, J.N. Reddy, Natural vibration of rectangular plates with an internal line hing using the first order shear deformation plate theory, Sound Vib. 263 (2003) 285–97 [CrossRef] [Google Scholar]
  9. J.N. Reddy, T. Kuppusamy, Natural vibrations of laminated anisotropic plates, Sound Vib. 94 (1984) 63–69 [CrossRef] [Google Scholar]
  10. H.T. Thai, S.E. Kim, Free vibration of laminated composite plates using two variable refined plate theory, Mech. Sci. 52 (2010) 626–33 [CrossRef] [Google Scholar]
  11. M.R. Aagaah, M. Mahinfalah, G.N. Jazar, Natural frequency of laminated composite plates using third order shear deformation theory, Compos. Struct. 72 (2006) 273–9 [CrossRef] [Google Scholar]
  12. K. Swaminathan, S. Patil, Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates, Compos. Struct. 82 (2008) 209–16 [CrossRef] [Google Scholar]
  13. I. Mishara, Sh. Kumar Sahu, An experimental approach to free vibration response of woven fiber composite plates under free-free boundary condition, Adv. Tech. Civil Eng. 1 (2012) 67–72 [Google Scholar]
  14. K.M. Dutt, H.K. Shivanand, An experimental approach to free vibration response of carbon composite laminates, Adv. Eng. Appli. (2011) 66–68 [Google Scholar]
  15. S.Y. Lee, T. Park, Free vibration of laminated composite skew plates with central cutout, Struct. Eng. Mech. 31 (2009) 587–683 [CrossRef] [Google Scholar]
  16. Ö. Civalek, Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method, Finite Elements in Analysis and Design 44 (2008) 725–31 [CrossRef] [Google Scholar]
  17. H.T. Thai, S.E. Kim, Free vibration of laminated composite plates using two variable refined plate theory, Mech. Sci. 52 (2010) 626–33 [CrossRef] [Google Scholar]
  18. S. Hatami, M. Azhari, M.M. Saadatpour, Free vibration of moving laminated composite plates, Compos. Struct. 80 (2007) 609–20 [CrossRef] [Google Scholar]
  19. S. Xiang, K.M. Wang, Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF, Thin-Walled Struct. 47 (2009) 304–10 [CrossRef] [Google Scholar]
  20. U. Topal, Ü. Uzman, Free vibration analysis of laminated plates using first-order shear deformation theory, Springer Proceedings in Physics 111 (2007) 493–98 [CrossRef] [Google Scholar]
  21. W. Zhen, C. Wanji, Free vibration of laminated composite and sandwich plates using global-local higher-order theory, Sound Vib. 298 (2006) 333–49 [CrossRef] [Google Scholar]
  22. J.M. Withney, N.J. Pagano, Shear deformation in heterogeneous anisotropic plates, Appl. Mech. 37 (1970) 1031–36 [Google Scholar]
  23. R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, Appl. Mech. 18 (1951) 31–38 [Google Scholar]
  24. A.P. Christoforou, S.R. Swanson, Analysis of impact response in composite plates, Solids Struct. 27 (1991) 161–70 [Google Scholar]
  25. S.M.R. Khalili, A. Shokuhfar, F. Ashenai Ghasemi, Effect of smart stiffening procedure on low-velocity impact response of smart structures, Mater. Process. Technol. 190 (2007) 142–52 [CrossRef] [Google Scholar]
  26. A. Carvalho, C.G. Soares, Dynamic response of rectangular plates of composite materials subjected to impact loads, Compos. Struct. 34 (1996) 55–63 [CrossRef] [Google Scholar]
  27. K.M. Liew, Vibration of symmetrically laminated cantilever trapezoidal composite plates, Mech. Sci. 34 (1992) 299–308 [CrossRef] [Google Scholar]
  28. W.O. Wong, The effects of distributed mass loading on plate vibration behavior, Sound Vib. 252 (2002) 577–83 [CrossRef] [Google Scholar]
  29. L. Meirovitch, Fundamental of Vibrations, McGraw-Hill, New York, 2001 [Google Scholar]
  30. R.H. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, Sound Vib. 102 (1985) 493–99 [Google Scholar]
  31. A.P. Christoforou, A.S. Yigit, Characterization of impact in composite plates, Compos. Struct. 43 (1998) 15–24 [CrossRef] [Google Scholar]
  32. G.H. Payeganeh, F. Ashenai Ghasemi, K. Malekzadeh, Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact, Thin-Walled Struct. 48 (2010) 62–70 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.