Open Access
Issue
Mechanics & Industry
Volume 14, Number 6, 2013
Page(s) 461 - 464
DOI https://doi.org/10.1051/meca/2013081
Published online 21 January 2014
  1. P.G. Saffman, A theory of dispersion in a porous medium, J. Fluid Mech. 6 (1959) 321–349 [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-R. de Dreuzy, J. Carrera, M. Dentz, T. Le Borgne, Time evolution of mixing in heterogeneous porous media, Water Resour. Res. 48 (2012b) W06511 [Google Scholar]
  3. G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. Roy. Soc. London Ser. Math. Phys. Sci. 219 (1953) 186–203 [CrossRef] [Google Scholar]
  4. R.A. Freeze, Stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media, Water Resour. Res. 11 (1975) 725–741 [CrossRef] [Google Scholar]
  5. L.W. Gelhar, C.L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19 (1983) 161–180 [CrossRef] [Google Scholar]
  6. Y. Rubin, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res. 26 (1990) 133–141 [CrossRef] [Google Scholar]
  7. A. Bellin, P. Salandin, A. Rinaldo, Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations, Water Resour. Res. 28 (1992) 2211–2227 [CrossRef] [Google Scholar]
  8. I. Jankovic, A. Fiori, G. Dagan, Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results, Water Resour. Res. 39 (2003) 1270 [CrossRef] [Google Scholar]
  9. I. Lunati, S. Attinger, W. Kinzelbach, Macrodispersivity for transport in arbitrary nonuniform flow fields: asymptotic and preasymptotic results, Water Resour. Res. 38 (2002) 1187 [CrossRef] [Google Scholar]
  10. J.-R. de Dreuzy, A. Beaudoin, J. Erhel, Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical simulations. Water Resour. Res. 43 (2007) W10439 [Google Scholar]
  11. T. Le Borgne, J.-R. de Dreuzy, P. Davy, O. Bour, Characterization of the velocity field organization in heterogeneous media by conditional correlations, Water Resour. Res. 43 (2007) W02419 [CrossRef] [Google Scholar]
  12. H. Schwarze, U. Jaekel, H. Vereecken, Estimation of Macrodispersion by Different Approximation Methods for Flow and Transport in Randomly Heterogeneous Media, Transport in Porous Media 43 (2001) 265–287 [CrossRef] [Google Scholar]
  13. S.P. Neuman, Y.-K. Zhang, A Quasi-Linear Theory of Non-Fickian and Fickian Subsurface dispersion 1. Theoretical Analysis With Application to Isotropic Media, Water Resour. Res. 26 (1990) 887–902 [Google Scholar]
  14. S. Attinger, M. Dentz, W. Kinzelbach, Exact transverse macro dispersion coefficients for transport in heterogeneous porous media, Stoch. Environ. Res. Risk Assess. 18 (2004) 9–15 [CrossRef] [Google Scholar]
  15. A.F.B. Tompson, L.W. Gelhar, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res. 26 (1990) 2541–2562 [CrossRef] [Google Scholar]
  16. A.L. Gutjahr, Fast Fourier transforms for random field generation: New Mexico Tech project report 4-R58-2690R, New Mexico Institute of Mining and Technology, 1989 [Google Scholar]
  17. P. Salandin, V. Fiorotto, Solute transport in highly heterogeneous aquifers, Water Resour. Res. 34 (1998) 949–961 [CrossRef] [Google Scholar]
  18. J.-E. Roberts, J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis 2, Finite Element Methods -part 1, P.G. Ciarlet, J.L. Lions (eds.), Elsevier Science Publishers B.V. North-Holland, 1991 pp. 523–639, [Google Scholar]
  19. Matheron, Eléments Pour une Théorie des milieux Poreux, Masson, Paris, 1967 [Google Scholar]
  20. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier Science Pub Co., 1981 [Google Scholar]
  21. D.W. Pollock, Semianalytical computation of path lines for finite-difference models, Ground Water 26 (1988) 743–750 [CrossRef] [Google Scholar]
  22. X.H. Wen, J.J. Gomez-Hernandez, The constant displacement scheme for tracking particles in heterogeneous aquifers, Ground Water 34 (1996) 135–142 [CrossRef] [Google Scholar]
  23. A. Beaudoin, J.R. de Dreuzy, J. Erhel, H. Mustapha, Parallel Simulations of Underground Flow in Porous and Fractured Media, Proceedings of the International Conference ParCo, John von Neumann Institute for Computing, Jülich, 2005 [Google Scholar]
  24. A. Beaudoin, J.-R. de Dreuzy, J. Erhel, A comparison between a direct and a multigrid sparse linear solvers for highly heterogeneous flux computations, paper presented at European Conference on Computational Fluid Dynamics, ECCOMAS CFD, 2006 [Google Scholar]
  25. M. Dentz, H. Kinzelbach, S. Attinger, W. Kinzelbach, Temporal behavior of a solute cloud in a heterogeneous porous medium: 3. Numerical simulations, Water Resour. Res. 38 (2002) 1118 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.