Open Access
Issue
Mechanics & Industry
Volume 15, Number 2, 2014
Page(s) 113 - 121
DOI https://doi.org/10.1051/meca/2014005
Published online 28 March 2014
  1. S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ion. 135 (2000) 305–313 [CrossRef] [Google Scholar]
  2. P. Chinda, S. Chanchaona, P. Brault, W. Wechsatol, A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas, Eur. Phys. J. Appl. Phys. 54 (2011) 23405 [CrossRef] [EDP Sciences] [Google Scholar]
  3. J. Pirkandi, M. Ghasemi, M.H. Hamedi, R. Mohammadi, Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC/CHP), J. Clean. Prod. 29-30 (2012) 151–162 [CrossRef] [Google Scholar]
  4. S. Farhad, F. Hamdullahpur, Y. Yoo, Performance evaluation of different configurations of bio SOFC micro/CHP systems for residential applications, Int. J. Hydrogen Energy 35 (2010) 3758–3768 [CrossRef] [Google Scholar]
  5. I. Staffell, R. Green, K. Kendall, Cost targets for domestic fuel cell CHP, J. Power Sources 181 (2008) 339–349 [CrossRef] [Google Scholar]
  6. T. Kuramochi, H. Wu, A. Ramírez, A. Faaij, W. Turkenburg, Techno-economic prospects for CO2 capture from a solid oxide fuel cell-combined heat and power plant, preliminary results, Energy Procedia 1 (2009) 3843–3850 [CrossRef] [Google Scholar]
  7. K. Nanaeda, F. Mueller, J. Brouwer, S. Samuelsen, Dynamic modeling and evaluation of solid oxide fuel cell heat and power system operating strategies, J. Power Sources 195 (2010) 3176–3185 [CrossRef] [Google Scholar]
  8. Y. Haseli, I. Dincer, G.F. Naterer, Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell, Int. J. Hydrogen Energy 33 (2008) 5811–5822 http://iea.org/publications/freepublications/publication/name,31287,en.html, 28 Nov 2012 [CrossRef] [Google Scholar]
  9. X. Zhanga, S.H. Chan, G. Li, H.K. Ho, J. Li, Z. Feng, A review of integration strategies for solid oxide fuel cells, J. Power Sources 195 (2010) 685–702 [CrossRef] [Google Scholar]
  10. F. Calise, M. Dentice, L. Vanoli, M.R. Spakovsky, Full load synthesis/design optimization of a hybrid SOFC/GT power plant, Energy 32 (2007) 446–458 [CrossRef] [Google Scholar]
  11. E. Fontell, T. Kivisaari, N. Christiansen, J.B. Hansen, J. Palsson, Conceptual study of a 250kW planar SOFC system for CHP application, J. Power Sources 131 (2004) 49–56 [CrossRef] [Google Scholar]
  12. M. Calì, M.G.L. Santarelli, P. Leone, Design of experiments for fitting regression models on the tubular SOFC/CHP100kWe: Screening test, response surface analysis and optimization, Int. J. Hydrogen Energy 32 (2007) 343–358 [CrossRef] [Google Scholar]
  13. R. Bove, S. Ubertini, Modeling solid oxide fuel cell operation: Approaches, techniques and results, J. Power Sources 159 (2006) 543–559 [CrossRef] [Google Scholar]
  14. V.M. Janardhanan, O. Deutschmann, Modeling of solid oxide fuel cell, Z. Phys. Chem. 221 (2007) 443–478 [CrossRef] [Google Scholar]
  15. S. Campanari, Thermodynamic model and parametric analysis of a tubular SOFC module, J. Power Sources 92 (2001) 26–34 [CrossRef] [Google Scholar]
  16. M. Dokiya, SOFC system and technology, Solid State Ionics 152-153 (2002) 383–392 [CrossRef] [Google Scholar]
  17. S.H. Chan, C.F. Low, O.L. Ding, Energy and Exergy analysis of simple solid oxide fuel cell power systems, J. Power Sources 103 (2002) 188–200 [CrossRef] [Google Scholar]
  18. T.J. Kutas, The exergy method of thermal plant analysis, Florida, Krieger Publishing Company, 1995 [Google Scholar]
  19. A.V. Akkayaa, B. Sahinb, H.H. Erdema, An analysis of SOFC/GT/CHP system based on exergetic performance criteria, Int. J. Hydrogen Energy 33 (2008) 2566–2577 [CrossRef] [Google Scholar]
  20. P.G. Bavarsad, Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system, Int. J. Hydrogen Energy 32 (2007) 4591–4599 [CrossRef] [Google Scholar]
  21. S. Motahar, A.A. Alemrajabi, Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system, Int. J. Hydrogen Energy 34 (2009) 2396–2407 [CrossRef] [Google Scholar]
  22. D.F. Cheddie, Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant, Int. J. Hydrogen Energy 36 (2011) 1702–1709 [CrossRef] [Google Scholar]
  23. A. Arsalis, Thermo-economic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10MWe, J. Power Sources 181 (2008) 313–326 [CrossRef] [Google Scholar]
  24. D. White, Reduction in Carbon Dioxide emissions: Estimating the potential contribution from wind Power, Renewable Energy Foundation, (2004) http://www.ref.org.uk/Files/david.white.wind.co2.saving.12.04.pdf, 19 Dec 2012 [Google Scholar]
  25. A. Azhdari, H. Ghadamian, A. Ataei, C.K. Yoo, A new approach for optimization of combined heat and power generation in edible oil plants, J. Appl. Sci. 9 (2009) 3813–3820 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.