Open Access
Issue
Mechanics & Industry
Volume 15, Number 3, 2014
Page(s) 233 - 242
DOI https://doi.org/10.1051/meca/2014014
Published online 30 May 2014
  1. AFNOR, Fatigue sous sollicitations d’amplitude variable. Méthode rainflow de comptage, 1993 [Google Scholar]
  2. S. Downing, D. Socie, Simple rainflow counting algorithms, Int. J. Fatigue 4 (1982) 31–40 [CrossRef] [Google Scholar]
  3. X. Pitoiset, Méthodes spectrales pour l’analyse en fatigue des structures métalliques sous chargements aléatoires multiaxiaux. Ph.D. thesis, Université libre de Bruxelles, 2001 [Google Scholar]
  4. A. Preumont, Vibrations aléatoires et analyse spectrale.Presses Polytechniques Romandes, 1990 [Google Scholar]
  5. S. Rice, Mathematical analysis of random noise. Selected papers on noise and stochastic processes, 1954 [Google Scholar]
  6. J. Lemaitre, J. Chaboche, Mécanique des matériaux solides.Dunod, 1996 [Google Scholar]
  7. C. Lalanne, Mech. Vib. Shock Analysis: Fatigue Damage, Lavoisier, 2009, Vol. 4 [Google Scholar]
  8. D. Benasciutti, R. Tovo, Comparison of spectral methods for fatigue analysis of broad-band gaussian random processes, Probabilistic Engineering Mechanics 21 (2006) 287–299 [Google Scholar]
  9. T. Dirlik, Application of computers in fatigue analysis.Ph.D. thesis, University of Warwick, 1985 [Google Scholar]
  10. S. Winterstein, Non-Normal Responses And Fatigue Damage, J. Eng. Mech. ASCE 111 (1985) 1291–1295 [CrossRef] [Google Scholar]
  11. S. Winterstein, T. Ude, T. Marthinsen, Volterra Models Of Ocean Structures – Extreme And Fatigue Reliability, J. Eng. Mech. ASCE 120 (1994) 1369–1385 [CrossRef] [Google Scholar]
  12. D. Benasciutti, R. Tovo, Cycle distribution and fatigue damage assessment in broad-band non-Gaussian random processes, Prob. Eng. Mech. 20 (2005) 115–127 [CrossRef] [Google Scholar]
  13. D. Benasciutti, R. Tovo, Fatigue life assessment in non-Gaussian random loadings, Int. J. Fatigue 28 (2006) 733–746 [CrossRef] [Google Scholar]
  14. M. Ochi, Probability distributions of peaks and troughs of non-Gaussian random processes, Prob. Eng. Mech. 13 (1998) 291–298 [CrossRef] [Google Scholar]
  15. M. Ochi, K. Ahn, Probability distribution applicable to non-gaussian random processes, Prob. Eng. Mech. 9 (1994) 255–264 [CrossRef] [Google Scholar]
  16. S. Sarkani, D. Kihl, J. Beach, Fatigue of welded-joints under narrow-band non-gaussian loadings, Prob. Eng. Mech. 9 (1994) 179–190 [CrossRef] [Google Scholar]
  17. S. Winterstein, Nonlinear vibration models for extremes and fatigue, J. Eng. Mech. ASCE 114 (1988) 1772–1790 [CrossRef] [Google Scholar]
  18. H. Neuber, Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress- strain law., J. Appl. Mech. 28 (1961) 544–551 [Google Scholar]
  19. G. Glinka, Calculation of inelastic notch-tip strain stress histories under cyclic loading, Eng. Fract. Mech. 22 (1985) 839–854 [CrossRef] [Google Scholar]
  20. H. Rognon, Comportement en fatigue sous environnement vibratoire : Prise en compte de la plasticité au sein des méthodes spectrales. Ph.D. thesis, Ecole Centrale Paris, 2013 [Google Scholar]
  21. H. Rognon et al., Modeling of plasticity in spectral methods for fatigue damage estimation of narrowband random vibrations, in IDETC/CIE (ASME, ed.), (Washington DC, USA), 2011 [Google Scholar]
  22. H. Rognon et al., Modeling of plasticity in spectral methods for fatigue damage estimation of random vibrations., in Fatigue Design (CETIM, ed.), (Senlis, French), 2011 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.