Open Access
Mechanics & Industry
Volume 15, Number 3, 2014
Page(s) 179 - 189
Published online 30 May 2014
  1. K.W. Thompson, Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987) 1–24 [Google Scholar]
  2. T.J. Poinsot, S.K. Lele, Boundary conditions for direct simulations of compressible viscous flow, J. Comput. Phys. 101 (1992) 104–129 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  3. D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. Comput. Phys. 36 (1980) 55–70 [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Selle, F. Nicoud, T. Poinsot, Actual impedance of nonreflecting boundary conditions: Implications for computation of resonators, AIAA J. 42 (2004) 958–964 [CrossRef] [Google Scholar]
  5. Y. Moguen, P. Bruel, E. Dick, Semi-implicit characteristic-based boundary treatment for acoustics in low Mach number flows, J. Comput. Phys. 255 (2013) 339–361 [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Pirozzoli, T. Colonius, Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations, J. Comput. Phys. 248 (2013) 109–126 [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Polifke, C. Wall, P. Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys. 213 (2006) 437−449 [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Prosser, Towards improved boundary conditions for the DNS and LES of turbulent subsonic flows, J. Comput. Phys. 222 (2005) 469–474 [CrossRef] [Google Scholar]
  9. N. Guézennec, T. Poinsot, Acoustically nonreflecting and reflecting boundary conditions for vorticity injection in compressible solvers, AIAA J. 47 (2009) 1709–1722 [CrossRef] [Google Scholar]
  10. G.I. Taylor, The spectrum of turbulence, Proc. R. Soc. Lond. A 164 (1938) 476–490 [CrossRef] [Google Scholar]
  11. Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels, E. Dick, Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, J. Comput. Phys. 231 (2012) 5522–5541 [CrossRef] [MathSciNet] [Google Scholar]
  12. W.Z. Shen, J.A. Michelsen, J.N. Sørensen, Improved Rhie-Chow interpolation for unsteady flow computations, AIAA J. 39 (2001) 2406–2409 [CrossRef] [Google Scholar]
  13. L. Biferale, G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani, Mimicking a turbulent signal: Sequential multiaffine processes, Phys. Rev. E 57 (1998) R6261–R6264 [CrossRef] [Google Scholar]
  14. J.D. Wilson, Y. Zhuang, Restriction on the timestep to be used in stochastic Lagrangian models of turbulent dispersion, Bound.-Lay. Meteorol. 49 (1989) 309–316 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.