Open Access
Issue |
Mechanics & Industry
Volume 15, Number 6, 2014
|
|
---|---|---|
Page(s) | 541 - 549 | |
DOI | https://doi.org/10.1051/meca/2014060 | |
Published online | 16 September 2014 |
- M. Bovenzi, Exposure-response relationship in the hand–arm vibration syndrome: an overview of current epidemiology research, Int. Arch. Occup. Environ. Health 71 (1998) 509–519 [Google Scholar]
- Y. Aldien, P. Marcotte, S. Rakheja, P.-É. Boileau, Influence of hand-arm posture on biodynamic response of the hand-arm exposed to zh-axis vibration, IJIE 36 (2006) 45–59 [Google Scholar]
- T. Nilsson, L. Burström, M. Hagberg, Risk assessment of vibration exposure and white fingers among platers, Int. Arch. Occup. Environ. Health 61 (1989) 473–481 [CrossRef] [PubMed] [Google Scholar]
- ISO 5349-1, Mechanical vibration and shock – Measurement and evaluation of human exposure to mechanical vibration, International Organization for Standardization, 2001 [Google Scholar]
- M. Thomas, Y. Beauchamp, Development of a new frequency weighting filter for the assessment of grinder exposure to wrist-transmitted vibration, 22nd ICC&IE, 1997 Cairo, Egypt, Dec 20-22, 4p. [Google Scholar]
- S. Rakheja, J.Z. Wu, R.G. Dong, A.W. Schopper, A comparison of biodynamic models of the human hand-arm for applications to hand-held power tools, J. Sound Vib. 249 (2002) 55–82 [Google Scholar]
- S.A. Adewusi, S. Rakheja, P. Marcotte, Biomechanical Models of the Human Hand-arm to Simulate Distributed Biodynamic Responses for Different Postures, Int. J. Ind. Ergon. 42 (2012) 249–260 [CrossRef] [Google Scholar]
- S. Adewusi, M. Thomas, H. Vu, Natural frequencies of the hand-arm system using finite element method, Proceedings of the 4th American Conference on Human Vibration, Hartford, Connecticut, USA, June 13–14, 2012, 17–18 [Google Scholar]
- V.H. Vu, M. Thomas, A.A. Lakis, L. Marcouiller, Operational modal analysis by updating autoregressive model, Mech. Syst. Signal Process. 25 (2011) 1028–1044 [Google Scholar]
- J.Z. Wu, R.G. Dong, S. Rakheja, A.W. Schopper, Simulation of mechanical responses of fingertip to dynamic loading, Med. Eng. Phys. 24 (2002) 253–264 [CrossRef] [PubMed] [Google Scholar]
- S.A. Adewusi, S. Rakheja, P. Marcotte, J. Boutin, Vibration transmissibility characteristics of the human hand-arm system under different postures, hand forces and excitation levels, J. Sound Vib. 329 (2010) 2953–2971 [Google Scholar]
- D.D. Reynolds, E.N. Angevine, Hand-arm vibration. Part II: vibration transmission characteristics of the hand and arm, J. Sound Vib. 51 (1977) 255–265 [CrossRef] [Google Scholar]
- H. Sakakibara, T. Kondo, M. Miyao, S. Yamada, T. Nakagawa, F. Kobayashi, Y. Ono, Transmission of hand-arm vibration to the head, Scand. J. Work Environ Health 12 (1986) 359–361 [CrossRef] [PubMed] [Google Scholar]
- G.J. Loren, R.L. Lieber, Tendon biomechanical properties enhance wrist muscle specialization, J. Biomechanics 128 (1995) 791–799 [CrossRef] [Google Scholar]
- C.N. Maganaris, J.P. Paul, In vivo human tendon mechanical properties, J. Physiol. 521 (1999) 307–313 [CrossRef] [PubMed] [Google Scholar]
- D.C. Wirtz, T. Schiffers, T. Pandorf, K. Radermacher, D. Weichert, R. Forst, Critical evaluation of known bone material properties to realize anisotropic FE simulation of the proximal femur, J. Biomech. 33 (2000) 1325–1330 [Google Scholar]
- J.H. Dong, R.G. Dong, S. Rakheja, D.E. Welcome, T.W. McDowell, J.Z. Wu, A method for analyzing absorbed power distribution in the hand and arm substructures when operating vibration tools, J. Sound Vibr. 311 (2008) 1286–1304 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.