Open Access
Issue
Mechanics & Industry
Volume 16, Number 1, 2015
Article Number 106
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2014066
Published online 26 September 2014
  1. H. Heshmat, J.A. Walowit, O. Pinkus, Analysis of gas lubricated compliant thrust bearings, J. Lubrication Technol. 105 (1983) 638–646 [CrossRef]
  2. H. Heshmat, J.A. Walowit, O. Pinkus, Analysis of gas-lubricated foil journal bearings, J. Lubr. Technol. 105 (1983) 647–655 [CrossRef]
  3. J.A. Walowit, J.N. Anno, Modern developments in lubrication mechanics, Applied Science Publishers, London, 1975
  4. I. Iordanoff, Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design, J. Tribol. 121 (1999) 816–822 [CrossRef]
  5. J.P. Peng, M. Carpino, Calculation of stiffness and damping coefficients for elastically supported gas foil bearings, J. Tribol. 115 (1993) 20–27 [CrossRef]
  6. J.W. Lund, Calculation of stiffness and damping properties of gas bearings, J. Lubr. Technol. 1968, pp. 793–804
  7. T.H. Kim, L. San Andrés, Analysis of advanced gas foil bearings with piecewise linear elastic supports, Tribol. Int. 40 (2007) 1239–1245 [CrossRef]
  8. L. San Andrés, T.H. Kim, Improvements to the analysis of gas foil bearings: integration of top foil 1d and 2d structural models, 2007
  9. L. San Andrés, T.H. Kim, Analysis of gas foil bearings integrating fe top foil models, Tribol. Int. 42 (2009) 111–120 [CrossRef]
  10. D. Ruscitto, J. Mc Cormick, S. Gray, Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine i - journal bearing performance, Technical Report NASA CR-135368, 1978
  11. M. Carpino, L.A. Medvetz, J.-P. Peng, Effects of membrane stresses in the prediction of foil bearing performance, Tribol. Trans. 37 (1994) 43–50 [CrossRef]
  12. J.P. Peng, M. Carpino, Coulomb friction damping effects in elastically supported gas foil bearings, Tribol. Trans. 37 (1994) 91–98 [CrossRef]
  13. J.P. Peng, M. Carpino, Finite element approach to the prediction of foil bearing rotor dynamic coefficients, J. Tribol. 119 (1997) 85–90 [CrossRef]
  14. C.A. Heshmat, D.S. Xu, H. Heshmat, Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods, J. Tribol. 122 (2000) 199–204 [CrossRef]
  15. D. Lee, Y.-C. Kim, K.-W. Kim, The dynamic performance analysis of foil journal bearings considering Coulomb friction: Rotating unbalance response, Tribol. Trans. 52 146–156 (2009) [CrossRef]
  16. D.-H. Lee, Y.-C. Kim, K.-W. Kim, The static performance analysis of foil journal bearings considering three-dimensional shape of the foil structure, J. Tribol. 130 (2008) 031102 [CrossRef]
  17. S. Le Lez, M. Arghir, J. Frene, A new bump-type foil bearing structure analytical model, J. Eng. Gas Turbines Power 129 (2007) 1047–1057 [CrossRef]
  18. S. Le Lez, M. Arghir, J. Frene, A dynamic model for dissipative structures used in bump-type foil bearings, Tribol. Trans. 52 (2008) 36–46 [CrossRef]
  19. K. Feng, S. Kaneko, Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model, J. Tribol. 132 (2010) 021706 [CrossRef]
  20. B.T. Paulsen, S. Morosi, I.F. Santos, Static, dynamic, and thermal properties of compressible fluid film journal bearings, Tribol. Trans. 54 (2011) 282–299 [CrossRef]
  21. J.S. Larsen, I.F. Santos, Compliant foil journal bearings – investigation of dynamic properties, In Proceedings of 10. International Conference on Schwingungen in Rotierenden Maschinen (SIRM2013), pages 1–12, ISBN 978–3–00–038602–2, Berlin, Germany, 25-27 February, 2013
  22. C.-P.R. Ku, H. Heshmat, Compliant foil bearing structural stiffness analysis: Part i-theoretical model including strip and variable bump foil geometry, J. Tribol. 114 (1992) 394–400 [CrossRef]
  23. C.-P.R. Ku, H. Heshmat, Structural stiffness and Coulomb damping in compliant foil journal bearings: theoretical considerations, Tribol. Trans. 37 (1994) 525–533 [CrossRef]
  24. C.-P.R. Ku, H. Heshmat, Structural stiffness and Coulomb damping in compliant foil journal bearings: parametric studies, Tribol. Trans. 37 (1994) 455–462 [CrossRef]
  25. H. Heshmat, C.P. Ku, Structural damping of self-acting compliant foil journal bearings, J. Tribol. 116 (1994) 76–82 [CrossRef]
  26. C.-P.R. Ku, H. Heshmat, Effects of static load on dynamic structural properties in a flexible supported foil journal bearing, ASME Trans. J. Vib. Acoust. 116 (1994) 257–262 [CrossRef]
  27. J.S. Larsen, A.C. Varela, I.F. Santos, Numerical and experimental investigation of bump foil mechanical behaviour, Tribol. Int. 74 (2014) 46–56 [CrossRef]
  28. C.-P.R. Ku, H. Heshmat, Compliant foil bearing structural stiffness analysis. ii: Experimental investigation, J. Tribol. 115 (1993) 364–369 [CrossRef]
  29. L. San Andrés, D. Rubio, T.H. Kim, Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions, J. Eng. Gas Turbines Power 129 (2007) 850–857 [CrossRef]
  30. C. DellaCorte, M.J. Valco, Load capacity estimation of foil air journal bearings for oil–free turbomachinery applications, Tribol. Trans. 43 (2000) 795–801 [CrossRef]
  31. S.A. Howard, Misalignment in gas foil journal bearings: An experimental study, J. Eng. Gas Turbines Power 131 (2009) 022501 [CrossRef]
  32. S.A. Howard, C. Dellacorte, M.J. Valco, J.M. Prahl, H. Heshmat, Steady-state stiffness of foil air journal bearings at elevated temperatures, Tribol. Trans. 44 (2001) 489–493 [CrossRef]
  33. S. Howard, C. Dellacorte, M.J. Valco, J.M. Prahl, H. Heshmat, Dynamic stiffness and damping characteristics of a high-temperature air foil journal bearing, Tribol. Trans. 44 (2001) 657–663 [CrossRef]
  34. P. Matta, M. Arghir, O. Bonneau, Experimental analysis of cylindrical air-bearing dynamic coefficients, Tribol. Trans. 53 (2010) 329–339 [CrossRef]
  35. B. Ertas, M. Drexel, J. Van Dam, D. Hallman, A general purpose test facility for evaluating gas lubricated journal bearings, J. Eng. Gas Turbines Power 131 (2009) 022502 [CrossRef]
  36. L. San Andrés, Hybrid flexure pivot-tilting pad gas bearings: analysis and experimental validation, J. Tribol. 128 (2006) 551–558 [CrossRef]
  37. D. Kim, Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions, J. Tribol. 129 (2007) 354–364 [CrossRef]
  38. T.H. Kim, L. San Andrés, Heavily loaded gas foil bearings: A model anchored to test data, ASME Conference Proceedings 2005 (2005) 763–771
  39. J.S. Larsen, I.F. Santos, Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method, J. Braz. Soc. Mecha. Sci. Eng., DOI: 10.1007/s40430-014-0220-5
  40. B.J. Hamrock, Fundamentals of Fluid Film Lubrication, McGRAW-HILL Series in Mechanical Engineering, McGRAW-HILL, Inc., New York, 1994
  41. P. Arumugam, S. Swarnamani, B.S. Prabhu, Experimental identification of linearized oil film coefficients of cylindrical and tilting pad bearings, J. Eng. Gas Turbines Power 117 (1995) 593–599 [CrossRef]
  42. J.X. Yuan, X.M. Wu, Identification of the joint structural parameters of machine tool by dds and fem, J. Eng. Ind. 107 (1985) 64–69 [CrossRef]
  43. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci. 1 (1988) 3–17 [CrossRef]
  44. IEC BIPM, ILAC IFCC, IUPAP IUPAC, and OIML ISO. Evaluation of measurement data–guide for the expression of uncertainty in measurement, jcgm 100 (2008) 2008
  45. L. Rubio, D. San Andrés, Structural stiffness, dry friction coefficient, and equivalent viscous damping in a bump-type foil gas bearing, J. Eng. Gas Turbines Power 129 (2007) 494–502 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.