Open Access
Issue
Mechanics & Industry
Volume 16, Number 1, 2015
Article Number 106
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2014066
Published online 26 September 2014
  1. H. Heshmat, J.A. Walowit, O. Pinkus, Analysis of gas lubricated compliant thrust bearings, J. Lubrication Technol. 105 (1983) 638–646 [CrossRef] [Google Scholar]
  2. H. Heshmat, J.A. Walowit, O. Pinkus, Analysis of gas-lubricated foil journal bearings, J. Lubr. Technol. 105 (1983) 647–655 [CrossRef] [Google Scholar]
  3. J.A. Walowit, J.N. Anno, Modern developments in lubrication mechanics, Applied Science Publishers, London, 1975 [Google Scholar]
  4. I. Iordanoff, Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design, J. Tribol. 121 (1999) 816–822 [CrossRef] [Google Scholar]
  5. J.P. Peng, M. Carpino, Calculation of stiffness and damping coefficients for elastically supported gas foil bearings, J. Tribol. 115 (1993) 20–27 [CrossRef] [Google Scholar]
  6. J.W. Lund, Calculation of stiffness and damping properties of gas bearings, J. Lubr. Technol. 1968, pp. 793–804 [Google Scholar]
  7. T.H. Kim, L. San Andrés, Analysis of advanced gas foil bearings with piecewise linear elastic supports, Tribol. Int. 40 (2007) 1239–1245 [CrossRef] [Google Scholar]
  8. L. San Andrés, T.H. Kim, Improvements to the analysis of gas foil bearings: integration of top foil 1d and 2d structural models, 2007 [Google Scholar]
  9. L. San Andrés, T.H. Kim, Analysis of gas foil bearings integrating fe top foil models, Tribol. Int. 42 (2009) 111–120 [CrossRef] [Google Scholar]
  10. D. Ruscitto, J. Mc Cormick, S. Gray, Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine i - journal bearing performance, Technical Report NASA CR-135368, 1978 [Google Scholar]
  11. M. Carpino, L.A. Medvetz, J.-P. Peng, Effects of membrane stresses in the prediction of foil bearing performance, Tribol. Trans. 37 (1994) 43–50 [CrossRef] [Google Scholar]
  12. J.P. Peng, M. Carpino, Coulomb friction damping effects in elastically supported gas foil bearings, Tribol. Trans. 37 (1994) 91–98 [CrossRef] [Google Scholar]
  13. J.P. Peng, M. Carpino, Finite element approach to the prediction of foil bearing rotor dynamic coefficients, J. Tribol. 119 (1997) 85–90 [CrossRef] [Google Scholar]
  14. C.A. Heshmat, D.S. Xu, H. Heshmat, Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods, J. Tribol. 122 (2000) 199–204 [CrossRef] [Google Scholar]
  15. D. Lee, Y.-C. Kim, K.-W. Kim, The dynamic performance analysis of foil journal bearings considering Coulomb friction: Rotating unbalance response, Tribol. Trans. 52 146–156 (2009) [CrossRef] [Google Scholar]
  16. D.-H. Lee, Y.-C. Kim, K.-W. Kim, The static performance analysis of foil journal bearings considering three-dimensional shape of the foil structure, J. Tribol. 130 (2008) 031102 [CrossRef] [Google Scholar]
  17. S. Le Lez, M. Arghir, J. Frene, A new bump-type foil bearing structure analytical model, J. Eng. Gas Turbines Power 129 (2007) 1047–1057 [CrossRef] [Google Scholar]
  18. S. Le Lez, M. Arghir, J. Frene, A dynamic model for dissipative structures used in bump-type foil bearings, Tribol. Trans. 52 (2008) 36–46 [CrossRef] [Google Scholar]
  19. K. Feng, S. Kaneko, Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model, J. Tribol. 132 (2010) 021706 [CrossRef] [Google Scholar]
  20. B.T. Paulsen, S. Morosi, I.F. Santos, Static, dynamic, and thermal properties of compressible fluid film journal bearings, Tribol. Trans. 54 (2011) 282–299 [CrossRef] [Google Scholar]
  21. J.S. Larsen, I.F. Santos, Compliant foil journal bearings – investigation of dynamic properties, In Proceedings of 10. International Conference on Schwingungen in Rotierenden Maschinen (SIRM2013), pages 1–12, ISBN 978–3–00–038602–2, Berlin, Germany, 25-27 February, 2013 [Google Scholar]
  22. C.-P.R. Ku, H. Heshmat, Compliant foil bearing structural stiffness analysis: Part i-theoretical model including strip and variable bump foil geometry, J. Tribol. 114 (1992) 394–400 [CrossRef] [Google Scholar]
  23. C.-P.R. Ku, H. Heshmat, Structural stiffness and Coulomb damping in compliant foil journal bearings: theoretical considerations, Tribol. Trans. 37 (1994) 525–533 [CrossRef] [Google Scholar]
  24. C.-P.R. Ku, H. Heshmat, Structural stiffness and Coulomb damping in compliant foil journal bearings: parametric studies, Tribol. Trans. 37 (1994) 455–462 [CrossRef] [Google Scholar]
  25. H. Heshmat, C.P. Ku, Structural damping of self-acting compliant foil journal bearings, J. Tribol. 116 (1994) 76–82 [CrossRef] [Google Scholar]
  26. C.-P.R. Ku, H. Heshmat, Effects of static load on dynamic structural properties in a flexible supported foil journal bearing, ASME Trans. J. Vib. Acoust. 116 (1994) 257–262 [CrossRef] [Google Scholar]
  27. J.S. Larsen, A.C. Varela, I.F. Santos, Numerical and experimental investigation of bump foil mechanical behaviour, Tribol. Int. 74 (2014) 46–56 [CrossRef] [Google Scholar]
  28. C.-P.R. Ku, H. Heshmat, Compliant foil bearing structural stiffness analysis. ii: Experimental investigation, J. Tribol. 115 (1993) 364–369 [CrossRef] [Google Scholar]
  29. L. San Andrés, D. Rubio, T.H. Kim, Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions, J. Eng. Gas Turbines Power 129 (2007) 850–857 [CrossRef] [Google Scholar]
  30. C. DellaCorte, M.J. Valco, Load capacity estimation of foil air journal bearings for oil–free turbomachinery applications, Tribol. Trans. 43 (2000) 795–801 [CrossRef] [Google Scholar]
  31. S.A. Howard, Misalignment in gas foil journal bearings: An experimental study, J. Eng. Gas Turbines Power 131 (2009) 022501 [CrossRef] [Google Scholar]
  32. S.A. Howard, C. Dellacorte, M.J. Valco, J.M. Prahl, H. Heshmat, Steady-state stiffness of foil air journal bearings at elevated temperatures, Tribol. Trans. 44 (2001) 489–493 [CrossRef] [Google Scholar]
  33. S. Howard, C. Dellacorte, M.J. Valco, J.M. Prahl, H. Heshmat, Dynamic stiffness and damping characteristics of a high-temperature air foil journal bearing, Tribol. Trans. 44 (2001) 657–663 [CrossRef] [Google Scholar]
  34. P. Matta, M. Arghir, O. Bonneau, Experimental analysis of cylindrical air-bearing dynamic coefficients, Tribol. Trans. 53 (2010) 329–339 [CrossRef] [Google Scholar]
  35. B. Ertas, M. Drexel, J. Van Dam, D. Hallman, A general purpose test facility for evaluating gas lubricated journal bearings, J. Eng. Gas Turbines Power 131 (2009) 022502 [CrossRef] [Google Scholar]
  36. L. San Andrés, Hybrid flexure pivot-tilting pad gas bearings: analysis and experimental validation, J. Tribol. 128 (2006) 551–558 [CrossRef] [Google Scholar]
  37. D. Kim, Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions, J. Tribol. 129 (2007) 354–364 [CrossRef] [Google Scholar]
  38. T.H. Kim, L. San Andrés, Heavily loaded gas foil bearings: A model anchored to test data, ASME Conference Proceedings 2005 (2005) 763–771 [Google Scholar]
  39. J.S. Larsen, I.F. Santos, Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method, J. Braz. Soc. Mecha. Sci. Eng., DOI: 10.1007/s40430-014-0220-5 [Google Scholar]
  40. B.J. Hamrock, Fundamentals of Fluid Film Lubrication, McGRAW-HILL Series in Mechanical Engineering, McGRAW-HILL, Inc., New York, 1994 [Google Scholar]
  41. P. Arumugam, S. Swarnamani, B.S. Prabhu, Experimental identification of linearized oil film coefficients of cylindrical and tilting pad bearings, J. Eng. Gas Turbines Power 117 (1995) 593–599 [CrossRef] [Google Scholar]
  42. J.X. Yuan, X.M. Wu, Identification of the joint structural parameters of machine tool by dds and fem, J. Eng. Ind. 107 (1985) 64–69 [CrossRef] [Google Scholar]
  43. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci. 1 (1988) 3–17 [CrossRef] [Google Scholar]
  44. IEC BIPM, ILAC IFCC, IUPAP IUPAC, and OIML ISO. Evaluation of measurement data–guide for the expression of uncertainty in measurement, jcgm 100 (2008) 2008 [Google Scholar]
  45. L. Rubio, D. San Andrés, Structural stiffness, dry friction coefficient, and equivalent viscous damping in a bump-type foil gas bearing, J. Eng. Gas Turbines Power 129 (2007) 494–502 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.