Open Access
Mechanics & Industry
Volume 16, Number 2, 2015
Article Number 207
Number of page(s) 7
Published online 12 March 2015
  1. P.K. Bhardway, S.C. Kaushik, S. Jain, Finite time optimization of an endoreversible and irreversible vapor absorption refrigeration system, Energ. Convers. Manage. 44 (2003) 1131–1144 [CrossRef] [Google Scholar]
  2. P.K. Bhardway, S.C. Kaushik, S. Jain, General performance characteristics of an irreversible vapor absorption refrigeration system using finite time thermodynamic approach, Int. J. Therm. Sci. 44 (2005) 189–196 [CrossRef] [Google Scholar]
  3. Y. Huang, D. Sun, Y. Kang, Performance optimization for an irreversible four-temperature level absorption heat pump, Int. J. Therm. Sci. 47 (2008) 7479–7485 [CrossRef] [Google Scholar]
  4. J. Chen, The optimum performance characteristics of a four-temperature-level irreversible absorption refrigerator at maximum specific cooling load, J. Phys. D 32 (1999) 3085–3910 [CrossRef] [Google Scholar]
  5. J. Chen, Optimal performance analysis of irreversible cycles used as heat pumps and refrigerators, J. Phys. D 30 (1997) 582–587 [CrossRef] [Google Scholar]
  6. F. Sun, X. Qin, L. Chen, C. Wu, Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers, Appl. Energy 81 (2005) 434–448 [CrossRef] [Google Scholar]
  7. L. Chen, T. Zheng, F. Sun, C. Wu, Irreversible four-temperature-level absorption refrigerator, Sol. Energy 80 (2006) 347–360 [CrossRef] [Google Scholar]
  8. T. Chen, Z. Yan, An ecological optimization criterion for a class of irreversible absorption heat transformers, J. Phys. D 31 (1998) 1078–1082 [CrossRef] [Google Scholar]
  9. Z. Yan, T. Chen, Optimization of the rate of exergy output for an endoreversible Carnot refrigerator, J. Phys. D 29 (1996) 3017–3021 [Google Scholar]
  10. Z. Yan, G. Lin, Ecological optimization criterion for an irreversible three heat-source refrigerator, Appl. Energy 66 (2000) 213–224 [CrossRef] [Google Scholar]
  11. R. Fathi, C. Guemimi, S. Ouaskit, An irreversible thermodynamic model for solar absorption refrigerator, Renew. Energy 29 (2004) 1349–1365 [Google Scholar]
  12. J.M. Gordon, K.C. Ng, Cool Thermodynamics. Cambridge International Science, Cambridge, 2000 [Google Scholar]
  13. K.C. Ng, H.T. Chua, Q. Han, T. Kashiwagi, A. Akisawa, T. Tsurusawa, Thermodynamic modeling of absorption chiller and comparison with experiments, Heat Transfer. Eng. 20 (1999) 42–51 [CrossRef] [Google Scholar]
  14. K.C. Ng, X.L. Wang, Thermodynamic methods for performance analysis of chillers, P. I. Mech. Eng. E-J. Pro. 219 (2005) 109–116 [CrossRef] [Google Scholar]
  15. J.M. Gordon, K.C. Ng, Predictive and diagnostic aspects of universal thermodynamic models for chillers, Int. J. Heat Mass Transfert 38 (1995) 807–818 [CrossRef] [Google Scholar]
  16. T. Morosuk, G. Tsatsaronis, A. Boyano, C. Gantiva, Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation, Int. J. Energy Environ. Eng. 3 (2012) 1–9 [Google Scholar]
  17. G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis of a refrigeration system for liquefaction of natural gas, Int. J. Energy Environ. Eng. 1 (2010) 1–17 [Google Scholar]
  18. P. Palazzo, Thermal and mechanical aspect of entropy-exergy relationship, Int. J. Energy Environ. Eng. 3 (2012) 1–10 [CrossRef] [Google Scholar]
  19. H.M. Hellmann, Carnot-COP for sorption heat pumps working between four temperature levels, Int. J. Refrigeration 25 (2002) 66–74 [CrossRef] [Google Scholar]
  20. A. Haj Taleb, M. Feidt, Analyse parametrique de la performance optimale d’une machine frigorifique quadritherme (Parametric analysis of the optimal performance of four heat reservoirs machine). Proceedings COFRET’04 22/24.4.2004, Nancy, France, 2004 [Google Scholar]
  21. E. Vasilescu, M. Feidt, R. Boussehain, L’optimisation des cycles ideaux exo-irreversibles des systèmes frigorifiques quadrithermes. In: Proceedings COFRET’04 22/24.4. Nancy, France, 2004 [Google Scholar]
  22. M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Conversion and Management 76 (2013) 561–570 [Google Scholar]
  23. M.H. Ahmadi, A.H. Mohammadi, S.M. Pourkiaei, Optimisation of the thermodynamic performance of the Stirling engine, International Journal of Ambient Energy, DOI: 10.1080/01430750.2014.907211 [Google Scholar]
  24. H. Sayyaadi, M.H. Ahmadi, S. Dehghani, Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria, J. Energy Eng., DOI: 10.1061/(ASCE)EY.1943-7897.0000191, 04014012 [Google Scholar]
  25. D.A.V. Veldhuizen, G.B. Lamont, Multiobjective Evolutionary Algorithms Analyzing the State-of-the-Art, 2000 [Google Scholar]
  26. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety 91 (2006) 992–1007 [Google Scholar]
  27. M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renew. Energy 2013 (60) 313–22 [Google Scholar]
  28. M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, A. Marco, Barranco-Jimenez Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm, Energy Convers. Manage. 73 (2013) 370–380 [CrossRef] [Google Scholar]
  29. M.H. Ahmadi, H. Sayyaadi, S. Dehghani, H. Hosseinzade, Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power, Energy Convers. Manage. 75 (2013) 282–291 [CrossRef] [Google Scholar]
  30. M.H. Ahmadi, S. Dehghani, A.H. Mohammadi, M. Feidt, A. Marco, Barranco-Jimenez. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria, Energy Convers. Manage. 75 (2013) 635–642 [Google Scholar]
  31. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multi-objective genetic algorithm. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 2014. DOI: 10.2516/ogst/2014028 [Google Scholar]
  32. M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle, Energy Convers Manage 89 (2015) 147–155 [Google Scholar]
  33. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Conversion and Management 80 (2014) 319–328 [Google Scholar]
  34. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Feidt, Seyed Mohsen Pourkiaei, Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Conversion and Management 82 (2014) 351–360 [Google Scholar]
  35. P.A. NgouateuWouagfack, R. Tchinda, Finite-time thermodynamics optimization of absorption refrigeration systems: a review, Renew. Sust. Energy Rev. 21 (2013) 524–536 [CrossRef] [Google Scholar]
  36. X. Qin, L. Chen, Y. Ge, F. Sun, Finite time thermodynamic studies on absorption thermodynamic cycles: a state of thearts review, Arab. J. Sci. Eng. 38 (2013) 405–419 [CrossRef] [Google Scholar]
  37. L. Chen, Z. Xiaoqin, F. Sun, C. Wu, Exergy-based ecological optimization fora generalized irreversible Carnot heat-pump, Appl. Energy 84 (2007) 78–88 [CrossRef] [Google Scholar]
  38. P.A. Ngouateu Wouagfack, R. Tchinda, Performance optimization of three-heat source irreversible refrigerator based on a new thermo-ecological criterion, Int. J. Refrigeration 34 (2011) 1008–1015 [CrossRef] [Google Scholar]
  39. X. Qin, L. Chen, F. Sun, C. Wu, Thermoeconomic optimization of an endoreversible four-heat-reservoir absorption refrigerator, Appl. Energy 81 (2005) 420–433 [CrossRef] [Google Scholar]
  40. E. Acikkalp, Modified thermo-ecological optimization forrefrigeration systems and an application for irreversible four-temperature-level absorption refrigerator, Int. J. Energy Environ. Eng. 4 (2013) 1–9 [CrossRef] [Google Scholar]
  41. V. Srinivas, K. Deb, Multiobjective optimization using no dominated sorting in genetic algorithms, J. Evol. Comput. 2 (1994) 221–48 [CrossRef] [Google Scholar]
  42. A. Ghaffarizadeh, Investigation on evolutionary algorithms emphasizing mass extinction. B.Sc thesis, Shiraz University of Technology, Shiraz, Iran, 2006 [Google Scholar]
  43. F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991) 7465–7469 [CrossRef] [Google Scholar]
  44. Z. Yan, Comment on cological optimization criterion for finite-time heat-engines, J. Appl. Phys. 73 (1993) 3583 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.