Open Access
Issue
Mechanics & Industry
Volume 16, Number 4, 2015
Article Number 402
Number of page(s) 7
DOI https://doi.org/10.1051/meca/2015016
Published online 27 April 2015
  1. V.W. Weekman, D.M. Nace, Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors, AIChE Journal 16 (1970) 397–404 [Google Scholar]
  2. J. Wei, C.D. Prater, A new approach to first-order chemical reaction systems, AIChE Journal 9 (1963) 77–81 [CrossRef] [Google Scholar]
  3. L.S. Lee, Y.W. Chen, T.N. Huang, W.Y. Pan, Four-lump kinetic model for fluid catalytic cracking process, Can. J. Chem. Eng. 67 (1989) 615–619 [Google Scholar]
  4. N.C. Dave, G.J. Duffy, P. Udaja, A four-lump kinetic model for the cracking/coking of recycled heavy oil, Fuel. 72 (1993) 1331–1334 [CrossRef] [Google Scholar]
  5. A. Gianetto, H.I. Farag, A.P. Blasetti, H.I. de Lasa, Fluid catalytic cracking catalyst for reformulated gasolines, Kinetic modeling, Ind. Eng. Chem. Res. 33 (1994) 3053–3062 [CrossRef] [Google Scholar]
  6. G. Niccum, S. White, Troubleshooting refinery equipment with multiphase CFD modelling, Petroleum Technology Quarterly 19 (2014) 133–137 [Google Scholar]
  7. L. Jiang, X. Fang-Zhi, L. Zheng-Hong, A CFD modeling of the gas–solid two-phase flow in an FCC riser under the electrostatic conditions, Asia-Pacific J. Chem. Eng. 9 (2014) 645–655 [CrossRef] [Google Scholar]
  8. J. Chang, W. Cai, K. Zhang, F. Meng, L. Wang, Y. Yang, Computational investigation of the hydrodynamics, heat transfer and kinetic reaction in an FCC gasoline riser, Chem. Eng. Sci. 111 (2014) 170–179 [CrossRef] [Google Scholar]
  9. Y.M. Ferng, K.-Y. Lin, Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology, Nucl. Eng. Design 258 (2013) 66–75 [Google Scholar]
  10. M. Syamlal, T. O’Brien, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser. 270 (1989) 22–31 [Google Scholar]
  11. R. Di Felicea, M. Rotondia, Fluid-particle Drag Force in Binary-solid Suspensions, Int. J. Chem. Reactor Eng. 10 (2012) 1542–6580 [Google Scholar]
  12. J. Garside, M.R. Al-Dibouni, Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems, Ind. Eng. Chem. Process Design Dev. 16 (1977) 206–214 [CrossRef] [Google Scholar]
  13. S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge University Press, 1991 [Google Scholar]
  14. S. Ogawa, A. Umemura, N. Oshima, On the equations of fully fluidized granular materials, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 31 (1980) 483–493 [Google Scholar]
  15. N. Chepurniy, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech. 140 (1984) 223–222.256 [CrossRef] [Google Scholar]
  16. D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds: kinetic theory approach. Illinois Inst. of Tech., Chicago, IL (United States). Dept. Chem. Eng. (1991) [Google Scholar]
  17. M. Ahsan, Computational fluid dynamics (CFD) prediction of mass fraction profiles of gas oil and gasoline in fluid catalytic cracking (FCC) riser, Ain Shams Eng. J. 3 (2012) 403–409 [CrossRef] [Google Scholar]
  18. N. Novia, M.S Ray, V. Pareek, Three-dimensional hydrodynamics and reaction kinetics analysis in FCC riser reactors, Chemical Product and Process Modeling 2 (2007) 1–17 [CrossRef] [Google Scholar]
  19. A. Gupta, D. Subba Rao, Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization, Chem. Eng. Sci. 56 (2001) 4489–4503 [CrossRef] [Google Scholar]
  20. H. Ali, S. Rohani, J. Corriou, Modelling and control of a riser type fluid catalytic cracking (FCC) unit, Chem. Eng. Res. Design 75 (1997) 401–412 [CrossRef] [Google Scholar]
  21. P.K. Dasila, I. Choudhury, D. Saraf, S. Chopra, A. Dalai, Parametric Sensitivity Studies in a Commercial FCC Unit, Adv. Chem. Eng. 2 (2012) 136–149 [CrossRef] [Google Scholar]
  22. Fluent-Inc, Fluent 6.3. User’s Guide, Fluent Inc, 2006 [Google Scholar]
  23. A. Mahecha-Botero, J.R. Grace, S. Elnashaie, C.J. Lim, Advances in modeling of fluidized-bed catalytic reactors: a comprehensive review, Chem. Eng. Commun. 196 (2009) 1375–1405 [CrossRef] [Google Scholar]
  24. A.K. Das, E. Baudrez, G.B. Marin, G.J. Heynderickx, Three-dimensional simulation of a fluid catalytic cracking riser reactor, Ind. Eng. Chem. Res. 42 (2003) 2602–2617 [CrossRef] [Google Scholar]
  25. V. Pareek, A. Adesina, A. Srivastava, R. Sharma, Sensitivity analysis of rate constants of Weekman’s riser kinetics and evaluation of heat of cracking using CATCRAK, J. Mol. Catal. A: Chem. 181 (2002) 263–274 [CrossRef] [Google Scholar]
  26. S. Benyahia, A. Gonzalez Ortiz, P. Paredes, J. Ignacio, Numerical analysis of a reacting gas/solid flow in the riser section of an industrial fluid catalytic cracking unit, Int. J. Chem. Reactor Eng. 1 (2003) A41 [CrossRef] [Google Scholar]
  27. R.K. Gupta, V. Kumar, V. Srivastava, A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor, Chem. Eng. Sci. 62 (2007) 4510–4528 [CrossRef] [Google Scholar]
  28. X. Lan, C. Xu, G. Wang, L. Wu, J. Gao, CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors, Chem. Eng. Sci. 64 (2009) 3847–3858 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.