Open Access
Issue
Mechanics & Industry
Volume 16, Number 5, 2015
Article Number 511
Number of page(s) 5
DOI https://doi.org/10.1051/meca/2014081
Published online 03 August 2015
  1. S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys, J. Phys. 43 (1982) 255–260 [CrossRef] [Google Scholar]
  2. S.S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metall. Trans. A 17 (1986) 115–120 [CrossRef] [Google Scholar]
  3. G. Bourbon, C. Lexcellent, S. Leclercq, Modelling of the non-isothermal cyclic behaviour of a polycrystalline Cu-Zn-Al shape memory alloy, J. Phys. IV 5 (1995) 221–226 [Google Scholar]
  4. H.C. Lin, S.K. Wu, M.T. Yeh, Metall. Trans. A 24 (1993) 2189 [CrossRef] [Google Scholar]
  5. K. Otsuka, Perspective of research on martensitic transformations present and future, J. Phys. IV 11 (2001) 3–9 [Google Scholar]
  6. J. Van Humbeeck, La transformation martensitique, dans Technologie des Alliages à Mémoire de Forme, Hermes 1993, Chap 3, pp. 63–88 [Google Scholar]
  7. T. Duerig, A. Pelton, D. Stockel, An overview of nitinol medical applications, Mater. Sci. Eng. 273-275 (1999) 149–160 [CrossRef] [Google Scholar]
  8. E. Patoor, A. Eberhardt, M. Berveiller, Potentiel pseudoélastique et plasticité de transformation martensitique dans les mono et polycristaux metalliques, Acta Metall. 35 (1987) 2779–2789 [CrossRef] [Google Scholar]
  9. E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, J. Phys. IV 6 (1996) 277–292 [Google Scholar]
  10. D.C. Lagoudas, A. Bhattacharyya, On the Correspondence between Micromechanical Models for Shape Memory Alloys and the Preisach Model for Hysteresis, Math. Mech. Solids 2 (1997) 405–440 [CrossRef] [Google Scholar]
  11. X. Gao, L.C. Brinson, A simplified multivariant SMA model based on invariant plane nature of martensitic transformation, J. Intell. Mater. Syst. Struct. 13 (2002) 795–810 [CrossRef] [Google Scholar]
  12. K. Tanaka, S. Kobayashi, Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Int. J. Plasticity 2 (1986) 59–72 [CrossRef] [Google Scholar]
  13. M. Berveiller, E. Patoor, M. Buisson, Thermomechanical constitutive equations for shape memory alloys, J. Phys. IV 1, C.4,387, European Symposium on Martensitic Transformation and Shape Memory Properties, 1991 [Google Scholar]
  14. L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct. 4 (1993) 229–242 [Google Scholar]
  15. C. Lexcellent, S. Leclerq, B. Gabry, G. Bourbon, The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model, Int. J. Plasticity 16 (2000) 1155–1168 [CrossRef] [Google Scholar]
  16. B. Raniecki, C. Lexcellent, RL-models of pseudoelasticity and their specification for some shape memory solids, Eur. J. Mech. A/Solids 13 (1994) 21–50 [Google Scholar]
  17. D.C. Lagoudas, Z. Bo, M.A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites, Mech. Compos. Mater. Struct. 3 (1996) 153–179 [CrossRef] [Google Scholar]
  18. D.C. Lagoudas, P.B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, Part I: Constitutive model for fully dense SMAs, Mech. Mater. 36 (2004) 865–892 [CrossRef] [Google Scholar]
  19. B. Raniecki, C. Lexcellent, Thermodynamics of isotropic pseudoelasticity in shape memory alloys, Eur. J. Mech. A/Solids 17 (1998) 185–205 [CrossRef] [Google Scholar]
  20. Shape Memory Applications Inc. http://www.sma-inc.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.