Open Access
Issue
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 112
Number of page(s) 7
DOI https://doi.org/10.1051/meca/2015052
Published online 01 December 2015
  1. J. Hartmann, F. Lazarus, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 15 (1937) [Google Scholar]
  2. I.N. Tao, J. Aerospace Sci. 27 (1960) 334 [CrossRef] [Google Scholar]
  3. R.A. Alpher, Int. J. Heat Mass Transfer 3 (1961) 108 [CrossRef] [Google Scholar]
  4. G.W. Sutton, A. Sherman, Engineering Magneto hydrodynamics, McGraw-Hill Book Co, 1965 [Google Scholar]
  5. K. Cramer, S.-I. Pai, Magnetofluid dynamics for engineers and applied physicists, McGraw-Hill Book Co, 1973 [Google Scholar]
  6. S.D. Nigam, S.N. Singh, Quart. J. Mech. Appl. Math. 13 (1960) 85 [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Tani, J. Aerospace Sci. 29 (1962) 287 [Google Scholar]
  8. V.M. Soundalgekar, N.V. Vighnesam, H.S. Takhar, IEEE Trans. Plasma Sci. PS 7 (1979) 178 [CrossRef] [Google Scholar]
  9. V.M. Soundalgekar, A.G. Uplekar, IEEE Trans. Plasma Sci. PS 14 (1986) 579 [CrossRef] [Google Scholar]
  10. E.M.H. Abo-El-Dahab, M.Sc. thesis, Helwan University, Egypt, 1993 [Google Scholar]
  11. H.A. Attia, Can. J. Phys. 76 (1998) 739 [Google Scholar]
  12. A.E. Scheidegger, The physics of flow through porous media, University of Toronto, 1974 [Google Scholar]
  13. M. Kaviany, Principles of heat transfer in porous media, Springer, 1995 [Google Scholar]
  14. S.L. Lee, J.H. Yang, Modelling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylinders, Int. J. Heat Mass Transfer 40 (1997) 3149–3155 [CrossRef] [Google Scholar]
  15. J.S. Andrade. Jr., U.M.S. Costa, M.P. Almeida, H.A. Makse, H.E. Stanley, Inertial effects on fluid flow through disordered porous media., Phys. Rev. Lett. 82 (1999) 5249–8252 [CrossRef] [Google Scholar]
  16. N. Jeong, D.H. Choi, C.L. Lin, Prediction of Darcy-Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method, J. Micromech. Microeng. 16 (2006) 2240–2250 [CrossRef] [Google Scholar]
  17. F. Khani, A. Farmany, M. Ahmadzadeh Raji, F. Addul Aziz Samadi, Analytic solution for heat transfer of a third grade viscoelastic fluid in non-Darcy porous media with thermophysical effects, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009) 3867–3878 [CrossRef] [Google Scholar]
  18. M.A.M. Abdeen, H.A. Attia, W. Abbas, W. Abd El-Meged, Effectiveness of porosity on transient generalized Couette flow with Hall effect and variable properties under exponential decaying pressure gradient, Indian J. Phys. 87 (2013) 767–775 [CrossRef] [Google Scholar]
  19. H.A. Attia, W. Abd El-Meged, W. Abbas, M.A.M. Abdeen, Unsteady flow in a porous medium between parallel plates in the presence of uniform suction and injection with heat transfer, Int. J. Civil Eng. 12 (2014) 277–281 [Google Scholar]
  20. H.A. Attia, W. Abbas, M.A.M. Abdeen, A.E.-D. Abdin, Effect of porosity on the flow and heat transfer between two parallel porous plates with the Hall effect and variable properties under constant pressure gradient, Blug. Chem. Commun. 46 (2014) 535–544 [Google Scholar]
  21. H.A. Attia, W. Abbas, M.A.M. Abdeen, M.S. Emam, Effect of porosity on the flow of a dusty fluid between parallel plates with heat transfer and uniform suction and injection, Eur. J. Environ. Civil Eng. 18 (2014) 241–251 [CrossRef] [Google Scholar]
  22. H.A. Attia, W. Abbas, M.A.M. Abdeen, A.A.M. Said, Heat transfer between two parallel porous plates for Couette flow under pressure gradient and Hall current, Sadhana 40 (2015) 183–197 [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Schlichting, Boundary layer theory, McGraw-Hill Book Co, 1968 [Google Scholar]
  24. W.F. Ames, Numerical solutions of partial differential equations, 2nd edn., Academic Press, New York, 1977 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.